
FUNK Fernsehen TECHNIK Elektronik

TABELLEN FÜR DEN PRAKTIKER

Daten von Elektronenstrahlröhren

	**************************************	97"×	· '/'	Parat Para	P)	P4' P3'	3	ρ,		1	() () () () () () () () () ()		/*	10	9/9/) _	12,	1	1			en	Platten
		To at The second	93II P2'	93 91 91 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Salar Francisco	, Nut	F' 93' 91" 91" 92 93	8.	Null Fak"				PUDO	5		Se S		ST /			4	ine rmr	Pk = katodennahe platten, Ps = schirm lenkplatten Gemessen an eine von 50 mm Ø Spitzenspannung a1 und den ange	J) PR J) Spirt
Man verbindet zweckmäßig Ps 1 des ersten bzw. zweiten Systems mit a.	≤ 0,3	□	=	10	6	750	750	150	0	700 400	2000	0,17 7500	0,20	1570	****	400 320		7500 1500	0,8	2 + 2 Systeme 4	160 25		1111	DBM 16-
schem Betrieb durch den dabei auftretenden elektrischen Trapez- 6 fehler z. T. kompensiert wird.	 • •	ia	=	10	† -	750	750	150	0	700 4 00	2000 70	0.27	0,32	1570		400 320	1500	1	0,8	2+2 Systeme 4	160 25		-12 gr -12 bl	DGM 16- DBM 16- DNM 16-
stellung der Systeme entsteht ein Trapezfehler, der bei asymmetri-	0,2	ಪ ⊪∧	ದೆ.	12 1	12	750	750	150	0	700 400	7500 2000 70	0,14 75	0,16	1570		450 320		7500 1500	0,8	2 + 2 2 Systeme 4	100 25		2 5 9	DBM 10-
Ahlanking	0,3	-					750	150	0	00 400	- 2000 700	0,22 -	0,25	1570		450 320	1500 4	I	0,8	2 + 2 2 Systeme 4	100 25		-12 bi	DBM 10
ω	< 0.2 - 0.2	5.0	5.0	, 0	4,0	1000	1000	150	0	700	- 8000 3200	0,10 -	0,12	60100	5.00	000 650	3000 3000	1	0,8	2+2 4	130 2			3
2	≤ 0,5	7,5	7.5	6,0	6,0	750	750	250	0	8	5000 2500 1500	0,28 50	0,375	40100	40	100		2000 2000	3 0,3	2 + 2 6,3	180 2	-	200	DB 18-1
richtung Pk bleibt praktisch unbe- einflußt. Die Randschärfe ist gerin-	∦∧ 0,3	7,5	7.5	6,0	6,0	750	750	250	0	8	6000 3000 1500	0,33 60	0,44	40100	40.	500		2000 2000	,3 0,3	2 + 2 6,3	130 2		244	DR 13-1
mmetrischer Betrieb va ichtung Ps einen kaun	≤ 0,3	7,5	7,5	6,0	6,0	750	750	250	0	8	6000 3000 1500	0,24 60	0,325	40100	40	500 —		2000 2000	,3 0,3	2 + 2 6,3	100 2	= ±4	111	DR 10-1
-	≤ 0,5		}			1500		250	0	8_	- 3000 1500	0,08 -	0,12	3565	35.	200	2000	1	3 0,3	2 + 2 6,3	70 2	259	71	DG 7-12 DB 7-12 DN 7-12
schalt- Bemerkungen bild		E	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		C _{Pk1} — 0	 Z ³	Z ^k ,	 3℃	3°	35	[M] [M] [M]		AEPk [mm/V] [n	[M _z]	100	18 L8		3,	Z = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	platten Ut	durchm. pl	tarbe dur	-	Teletunken
Sockel-	Linien- Sc		ten	Kapazitäten				erte	Grenzwerte	0		ikeiil)	Empfindlichkeit ¹)	Betriebswerte E	Betrieb	pros		- 18 m	Heizung			***		Туре

1								_				-	
		bl = blau; gr 1) a = asymm		DB 13-2 DG 13-2	PR 10-6	1000	DR 10-5	7	DR 10-2	7777	DB 7-5 DG 7-5 DR 7-5		Type Valvo
	2 + + 2 = +	<u> </u>	eini	흔	eini	9 E	<u>1</u> 97	5	<u> </u>	<u>=</u> <u>7</u> 9 :	<u> </u>		Schirm- farba
	arg fik	grün; Inl = lang nachleuchtend; eInl = ische Zeitplatten; ") Spitzenspannung :	-	3		97,5	97,5		97,5	71	71	(max.)	Schirm- durch- messer
19.47	01 02 01 02	lang nac		> + >	1	2+2	2 + 2a		2+2	2 + 2 a	2+2		Ablenk- platten
	() s	Spit		× 4	3	6,3	4.0		6,3	6,3	6,3	13	Z : #
	02	chten		2		0.3	0,45		0,3	0,4	.0,4	2	- N
		achleuchtend; eini = ") Spitzenspannung	2000	4000	2000	4000	1000	2500	1		1		200
	22 E E E E E E E E E E E E E E E E E E	N	20	20003)	20003)	0 2000³)	10	10003)	20003)	800	800	3	
		em lang r chen den l	ohne N 400690	4	4	4.	ohne Nachbesch 003) 200340 1846	2	4	200300	200300	3	~ J
	25 X	extrem lang nachleuchtend. 10-5-Typen: Nur noch t wischen den Platten des Systems; D, = y-Platten, D,	ohne Nachbeschleunigung 003) 400690 45100 0,45	mit Nachbeschleunigung 400690 45100 0,35	ohne Nachbeschlaunigung 400720: 45100 0,30	mit Nachbeschleunigung 400720 45100 0,25	ohne Nachbeschleunigung 00340 1846 0,65	0,370 1846 0,37	45100	050	050	3	1
			eunigung 0,45	0,35	aunigung 0,30	0,25	eunigung 0,65	0,37	0,30	0,26	0,26	[wm/V]	empfin AE _y
2 071100	000 02,92 000 02,92	10-5-Typen: Nur noch für Ersatzzwecke ems; D ₁ = y-Platten, D ₂ = x-Platten; ³)	0,40	0.30	0,23	0,19	0,55	0,32	0,23	0,16	0.16	[mm/V]	Empfindlichkeit AE _y AE _x
1		Platte	5000	S		5000	3000		1	1			Uag
	[- 7a	noch für en, D ₂ =	0 25000) 1000			0 25003)	0 12003)		2500°)	1000 min 800	1000 min 800		J Uaz
	京十十章	für Ersatzzwa = x-Platten;	100			1000	500		1000	400	400	3	Ual
1	0 0	tten;	0			0	٥		0	0	.0	-	
		(C. C. C	150			450	200		150	100	100	-	zwerte $-U_z$
	A 0	7	450	1		450	350		450	450	450	3	1dn
	97 5 04 00 00 5 03 03 03 03	') Gemes	450		į	455	450		450	750	750	3	UD ₁ 2) UD ₁₁ 2)
	2"	sen o	0,8		5	œ •	.3		8.0	9.0	9,0	CEI	
		n einem	7,0			л Э	5,7		5,8	.A .8	, <u>4</u> ,	CD1	3
	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Zeile	8,0			× ×	5,6		5,8	4.	4,8	CD1	
	3 1 1 1 3	nraster	9,0	1,188	-	7 6	8,0		7,6	5,0	5,0	CDz	Χag
	m.92	auf ei	9,0		2	7 %	7,5		7.6	5.4	5,4	Cpg'	Kapazitäten
	. ₩.	ner Schir	2,5		•	0	1,9		1,9	0,6	0,6	(CD1 D1)	ten [pF]
		mfläche v	2,5		- 1	.	2,6		2.4	0,8	0,8	ΣD: D2 C	
	a2,92 b2 b2'	*) Gemessen an einem Zeilenraster auf einer Schirmfläche von 50 mm ©.	0,4		9,00	3	0,3		0,35	0,1	0,1	D1D1,-D2D	
	# BZ 91 PT	G.	0,4	0,3	0,4	0,3	0, 20	2	0,4	0,7	0,7	$D_1' CD_2 D_2' CD_1D_1'-D_2D_2' $ bei $I_8 = 0.5\mu A$	Linienbreite*)
7.00	07.92 07.92		<		7		Ξ		= ,			tungen	Elektro- den- und Sockel-
	91 000 02 02 02 02 02 02 02 02 02 02 02 02				a, zu erden.	Es empfiehlt sich,	erden. D ₂ ' soll mit a ₂ verbunden werden.		Es empfiehlt sich, az zu erden.	Es empfiehlt sich, a ₂ zu erden. D ₂ ' soll mit a ₂	Es empfiehlt sich, az zu erden.		Bemerkungen

FUNK TECHNIK

CHEFREDAKTEUR CURT RINT

AUS	DEW	INHALT	9
Daten von Elektronenstrahlröhren	634	Amateursender für das 10-m-Band	647
Rechtsfragen zur Außenantenne Neue Fernsehantennen und Antennen-	the state of the s	Fernseh-Service-Lehrgang Klein-Meßgeräte MINITEST*	649
zubehör	637	Röhrenvoltmeter »Minimeter«	651
Plattenspieler und Plattenwechsler	639	Geräte für den Reparaturpraktiker	654
Deutsche Industrie-Ausstellung		Bestimmungen für den Erwerb von	
Kurznachrichten	642	Seefunkzeugnissen	656
Die Dimensionierung von Meßwandlern		FT-AUFGABEN	
für einen breiten Frequenzbereich	1.000 1.000	Genügt der Isolationswert des Kopp-	0.88
Elektronische Stabilisierung von Gleich-		lungskondensators?	657
und Wechselspannungen	645	Von Sendern und Frequenzen	657
SCHALTUNGS- UND WERKSTATTS- WINKE		AUSLANDSBERICHTE FT-ZEITSCHRIFTENDIENST	658
Gitterspannungsgerät für Abgleich- arbeiten		Bildstörungen durch Flugzeuge Verstärker mit neuartiger Phasen-	660
Fernanzeigevorrichtung für die Rah-		umkehr	661
menstellung		FT-BRIEFKASTEN	662
Zu unserem Titelbild: Fließbandfertigung vor	Platten	spielerchassis auf dem Philips-Stand der Deuts	schen
Industrie-Ausstellung 1953 in Berlin		Aufnahme: FT-Schy	

Das Recht des Mieters auf die Außenantenne unter Berücksichtigung des UKW- und Fernsehempfangs

Dr. J. AUBERT Rechtsfragen zur Außenantenne

Spezielle Bestimmungen, die etwas darüber aussagen, ob ein Mieter in seiner Eigenschaft als Teilnehmer am Ton- oder Fernsehrundfunk von seinem Vermieter die Genehmigung zur Anbringung einer Außenantenne verlangen kann, gibt es im deutschen Recht nicht. Lediglich im Wohnungseigentumsgesetz vom 15.3.1951 findet sich eine Bestimmung, die besagt, daß "die Duldung aller Maßnahmen, die zur Herstellung einer Rundfunkempfangsanlage zugunsten eines Wohnungseigentümers erforderlich sind", zur ordnungsmäßigen Verwaltung eines unter dieses Gesetz fallenden Hauses gehört. Mag es sich hier auch nicht um das Verhältnis Mieter zu Vermieter, sondern um das der Miteigentümer untereinander handeln, so gibt doch die Tatsache, daß sich die einzige Bestimmung des deutschen Rechts, die sich mit dem Anspruch eines Wohnungsinhabers auf eine Außenantenne befaßt, in einem zum bürgerlichen Recht gehörigen Gesetz findet, einen Anhaltspunkt dafür, aus welchen Rechtsnormen derselbe Anspruch des Mieters gegen seinen Vermieter abzuleiten ist. Es kann hierfür lediglich das BGB mit seinen Bestimmungen über die Miete (§§ 535 ff.) in Frage kommen.

Rechtliche Schwierigkeiten entstehen dann nicht, wenn im Mietvertrag selbst die Frage der Anbringung von Außenantennen geregelt ist oder besondere Antennenverträge zwischen Vermieter und Mieter abgeschlossen worden sind. Baugenossenschaften und Baugesellschaften, die in der heutigen Zeit die wesentlichen Träger der Bautätigkeit sind, machen hiervon in zunehmendem Maße Gebrauch. Jedem Mieter, der einen Mietvertrag neu abschließt und der Wert auf eine Außenantenne legt, kann nur geraten werden, diese Frage bereits im Mietvertrag zu regeln, um von vornherein spätere unliebsame Auseinandersetzungen mit seinem Hauseigentümer auszuschließen.

Welche Ansprüche haben aber nun diejenigen Mieter, die vertraglich die Frage der Anbringung der Außenantenne nicht geregelt haben?

In § 535 BGB wird die Hauptpflicht des Vermieters wie folgt umrissen: "Durch den Mietvertrag wird der Vermieter verpflichtet, dem Mieter den Gebrauch der vermieteten Sache während der Mietzeit zu gewähren." Liegt darin auch die Verpflichtung, die Anbringung einer Außenantenne zu dulden?

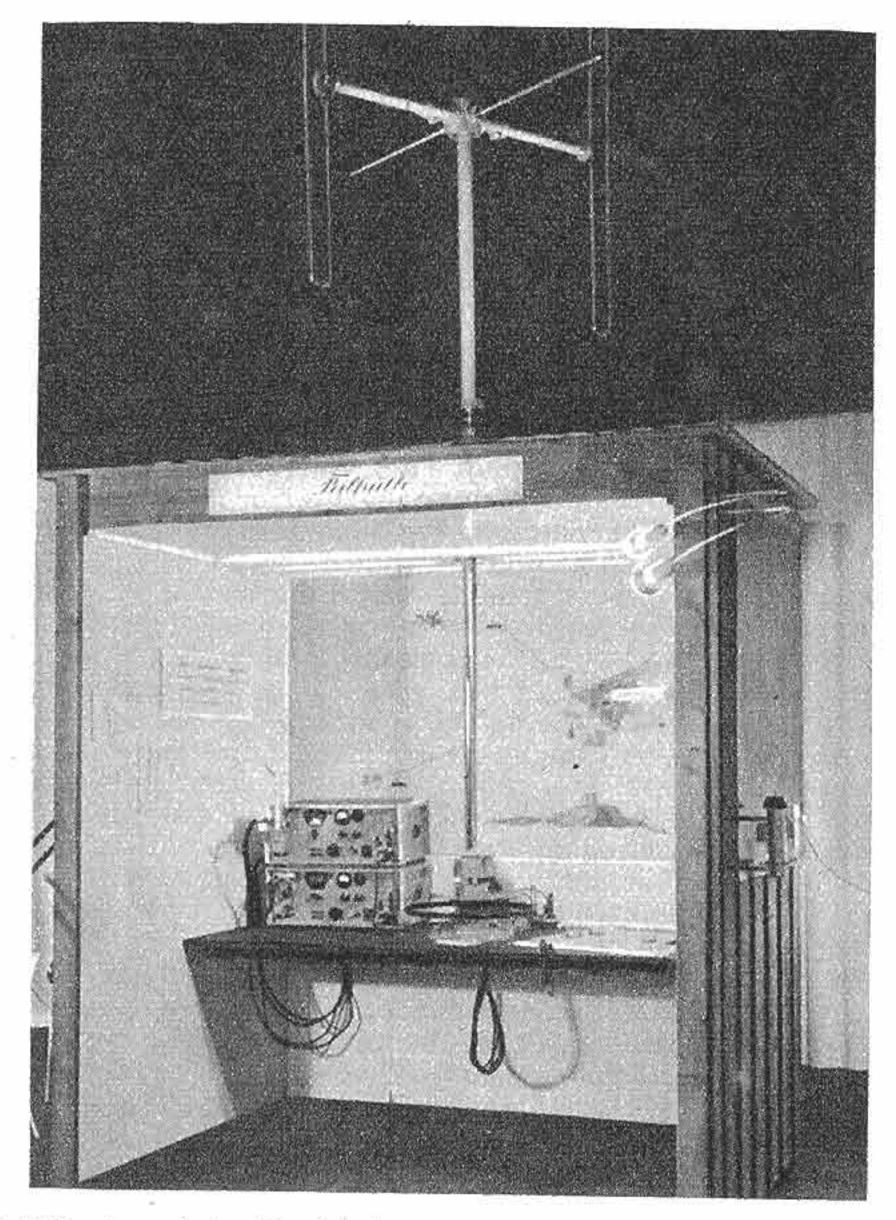
Zunächst ist festzustellen, daß diese Frage in der Rechtsprechung fast einhellig bejaht wird. Bereits 1924, als der Rundfunk noch in den Kinderschuhen steckte, hatte das Landgericht Bautzen¹) ausgeführt: "Es wäre im höchsten Grade rückschrittlich, wollte man sich den Tatsachen verschließen, daß dieselbe Verkehrssitte, die dem Vermieter zumutet, den Fernsprechmast zu dulden, nicht auch von ihm die Duldung der Anbringung eines Mastes für die Antennenanlage verlangt." Hieran hat die Rechtsprechung bis 1945 festgehalten, ohne sich durch zwei hörerfeindliche Urteile des Reichsgerichts aus den Jahren 1927 und 1928²) beirren zu lassen.

2) RGZ 116, S. 93, und JW [1928], S. 2517 4) MDR [1952], S. 614

1) JW [1925], S. 661 2)

Als nach dem Zusammenbruch mit der zunehmenden Verschlechterung der Empfangsverhältnisse, insbesondere durch den Kopenhagener Wellenplan, die Anbringung von Hochantennen in immer größerem Umfang notwendig wurde, haben die Gerichte fast ausnahmslos an die frühere hörerfreundliche Rechtsprechung angeknüpft und den Anspruch des Mieters auf Anbringung einer Hochantenne bejaht³). Neben einigen nicht veröffentlichten Entscheidungen Hamburger und Stuttgarter Gerichte sind aus neuester Zeit vor allem zwei in dieser Richtung ergangene Urteile des Landgerichts Düsseldorf4) und des Amtsgerichts Hamburg⁵) zu erwähnen. In den Entscheidungsgründen des äußerst gründlich bearbeiteten Hamburger Urteils, dem als Tatbestand die Forderung eines Mieters auf Anbringung einer UKW-Dipol-Antenne auf dem Dach des von ihm bewohnten Grundstücks zugrunde lag, heißt es bereits einleitend: "Nach ständiger in Rechtsprechung und Literatur geltender Auffassung ist der Vermieter heute verpflichtet, dem Mieter den Anschluß an diejenigen Einrichtungen zu gewähren, die nach den allgemein vertretenen Verkehrsanschauungen zum täglichen Leben gehören, wie Elektrizität, Wasser, Gas, Fernsprecher. Es entspricht allgemeiner Rechtsüberzeugung, daß zu diesen Einrichtungen auch der Rundfunk gehört." Zutreffend führt das Gericht dann weiter aus, daß jeder Hörer nicht nur Anspruch auf möglichst einwandfreien Empfang des Mittelwellenprogramms hat, sondern ihm auch die technischen Hilfsmittel zugebilligt werden müssen, die eine störungsfreie Wiedergabe der UKW-Rundfunksendungen gewährleisten. Auch den vom Vermieter geltend gemachten Einwand einer erhöhten Blitzgefahr läßt das Gericht unter Hinweis auf die Untersuchungen hierüber zu früheren Entscheidungen nicht gelten. Beachtenswert ist endlich, daß das Urteil abschließend zu der Feststellung gelangt, daß allerdings der Anspruch des Mieters nicht auf die Einrichtung einer Hochantenne schlechthin, sondern — nach Wahl des Vermieters — auf Errichtung einer Einzelantenne oder auf Anschluß an eine Gemeinschaftsantenne geht. Insoweit schließt sich das Urteil der bereits vorstehend erwähnten Entscheidung des Landgerichts Düsseldorf an und berücksichtigt den häufig von der Vermieterseite erhobenen Einwand, daß es unzumutbar sei, ein Haus durch einen Wald von Hochantennen zu verunzieren.

In bezug auf Fernsehantennen sind Entscheidungen bisher noch nicht ergangen. Es kann aber keinem Zweifel unterliegen, daß dieselben Gesichtspunkte, die das Hamburger Urteil für UKW-Dipol-Antennen entwickelt hat, in gleichem Maße auch für Fernsehantennen gelten.


Da — wie ausgeführt — der Anspruch des Mieters gegen den Grundstückseigentümer auf Duldung einer Hochantenne ausschließlich aus dem Mietrecht hergeleitet werden kann, könnten

3) Abweichend lediglich AG Hamburg vom 1. 3. 1949 (Hamburger Grundeigentum [1949], S. 26)

5) MDR [1953], S. 422

Zweifel entstehen, ob auch einem Untermieter, der bekanntlich nur zu seinem Vermieter, nicht aber auch zu dem Grundstückseigentümer in Rechtsbeziehungen steht, ein derartiges Recht zu gewähren ist. Urteile liegen — soweit festgestellt worden ist in dieser Richtung noch nicht vor. Zum Vergleich kann jedoch das Fernsprechrecht herangezogen werden, bei dem die Verhältnisse ähnlich liegen. Da die Deutsche Bundespost kein Recht hat, private Grundstücke ohne Genehmigung des Eigentümers zu benutzen, kann einem Mieter ein Fernsprechanschluß nur eingerichtet werden, wenn vorher der Grundstückseigentümer in Form der sogenannten "Grundstückseigentümererklärung" die Zustimmung zur Einrichtung eines Fernsprechanschlusses auf seinem Grundstück erteilt hat. Weigert er sich, so muß der Mieter - ebenso wie der Rundfunkhörer, dem die Errichtung einer Hochantenne von dem Hauseigentümer untersagt wird — die Hilfe der Gerichte in Anspruch nehmen, wobei als Klaqegrundlage ebenfalls allein die mietrechtlichen Bestimmungen des BGB in Frage kommen. In diesem Zusammenhang haben nun die Gerichte⁶) entschieden, daß der Untermieter nicht ånders zu behandeln ist als der Mieter, dem schon seit Jahrzehnten das Recht auf die Zustimmung seines Hauseigentümers zur Einrichtung eines Fernsprechanschlusses zugebilligt wird. Als Folge ergibt sich daraus, daß ein Hauseigentümer dem von einem Untermieter geltend gemachten Anspruch auf Duldung einer Hochantenne nicht mit dem Einwand begegnen kann, daß zwischen ihm und dem Untermieter keinerlei Rechtsbeziehungen bestehen, auf die ein derartiger Anspruch begründet werden könnte.

Unrichtig wäre es jedoch, aus den vorstehenden Ausführungen zu schließen, daß die Rechtsprechung das Recht auf Anbringung

Mit Hilfe der auf der Düsseldorfer Funkausstellung gezeigten feststehenden Peilhütte der Post und zweier Funkmeßwagen ist nach einem Dreieckverfahren die örtliche Eingrenzung von Störquellen leicht durchzuführen

einer Hochantenne völlig uneingeschränkt gewährt. Vielmehr ergeben sich aus der Praxis der Gerichte einige Grundsätze, die bei Prüfung jedes Einzelfalles Berücksichtigung finden müssen: a) Der Vermieter kann sich darauf berufen, daß ihm aus triftigen Gründen die Anbringung einer Hochantenne auf dem Dache seines Hauses nicht zugemutet werden kann. Als triftiger Grund wird z. B. die mangelnde Tragfähigkeit eines Daches zu gelten haben, das nach der Beschädigung des Hauses durch Kriegseinwirkungen als bloßes Notdach errichtet worden ist.

b) Aus ästhetischen Gründen kann bei künstlerisch wertvollen Gebäuden die Anbringung von Hochantennen versagt werden, wobei der Begriff des "künstlerisch wertvollen Baues" von der Rechtsprechung allerdings — mit Recht — eng ausgelegt wird und darunter nur reine Kunstbauten, nicht aber auch bloße Wohnbauten verstanden werden.

c) Der Vermieter kann weiterhin verlangen, daß die Antennen in technischer Beziehung den VDE-Vorschriften entsprechen.

d) Als letztes wird der Mieter sich verpflichten müssen, die Haftung für sämtliche Schäden zu übernehmen, die durch Anbringung der Hochantenne entstehen (Beschädigung des Daches bei Unterhaltung der Antenne).

In diesem Zusammenhang noch ein Hinweis zur Frage der Versicherung des Rundfunkteilnehmers: Bis 1945 konnte der Einwand des Vermieters, daß durch die Errichtung der Antenne eventuell Schaden an seinem Grundstück entstehen könnte, stets durch die Bezugnahme auf die von der Reichsrundfunkgesellschaft zugunsten ihrer Hörer abgeschlossene Versicherung entkräftet werden. Nach 1945 hat sich in dieser Hinsicht die Rechtslage insofern geändert, als die Versicherung der Rundfunkhörer in Wegfall gekommen ist. Da aber die Rundfunkgesellschaften zur Zeit erwägen, eine derartige Versicherung erneut abzuschließen (der Süddeutsche Rundfunk hat dies mit Wirkung vom 1.8. 1953 bereits getan), ist zu hoffen, daß in Kürze die Rechtslage insoweit wieder die gleiche sein wird wie vor 1945 und dadurch dem Rundfunkhörer bei seinem Kampf um die Hochantenne ein weiteres Argument in die Hand gegeben ist. Zum Schluß noch ein Wort zu dem von Zeit zu Zeit immer wieder erhobenen Ruf nach Schaffung eines besonderen Antennengesetzes: Wir leben in einer Ära gesetzgeberischer Überproduktion. Der erste Bundestag hat z. B. Hunderte von Gesetzen verabschiedet. Diese Situation zwingt dazu, ein Tätigwerden des Gesetzgebers nur dann zu fordern, wenn hierzu eine unabweisbare Notwendigkeit gegeben ist, d. h. in unserem Falle, wenn die Rechtsprechung im Widerspruch zu den Forderungen der Technik stehen würde. Das ist aber — wie vorstehend ausgeführt — nicht der Fall. Auch Haensel, der erst vor kurzem ein spezielles Antennengesetz gefordert hat7), erkennt das "bezüglich der normalen Antenne für den Hörerfunk" an, hat aber Bedenken hinsichtlich der UKW- und Fernsehantennen. Was den Hinweis auf einen mangelnden Rechtsschutz des Mieters bei UKW-Dipol-Antennen anbelangt, so kann dieses Argument mit Rücksicht auf das in der Zwischenzeit ergangene Hamburger Urteil nicht mehr als stichhaltig anerkannt werden. Ein Anhaltspunkt dafür, daß die Gerichte bei Fernsehantennen einen anderen Standpunkt einnehmen werden, ist ebenfalls nicht gegeben. Und endlich ist auch der letzte Grund, den Haensel für die Notwendigkeit eines Antennengesetzes anführt — Regelung für den Fall, daß eine Vielzahl von Mietern eine Hochantenne wünscht -, in der Zwischenzeit hinfällig geworden. Die Rechtsprechung hat dieses Problem bereits dahingehend gelöst, daß — nach Wahl des Hauseigentümers der Mieter lediglich einen Anspruch auf Anbringung einer Hochantenne oder auf Anschluß an eine Gemeinschaftsantenne hat.

Bestritten wird nicht, daß gewisse Fragen des Antennenrechts noch einer Klärung bedürfen, so z.B. die Regelung der Kostenfrage für eine gemeinsame Hochantenne, wenn ein Mieter entweder gar nicht Rundfunkhörer ist oder sich mit einer Zimmerantenne begnügt. Derartige Fragen können aber durch ein Gesetz, das stets nur allgemeine Grundsätze aufstellen und sich nicht in einer Kasuistik verlieren kann, kaum mit Erfolg geregelt werden.

Ein anderes Problem ist es, ob dem Hauseigentümer gesetzlich die Pflicht auferlegt werden soll, eine allen Mietern zur Verfügung stehende Hochantenne auf seinem Hause zu errichten. Ob ein derartiger Vorschlag, der ohne Zweifel — vom Standpunkt des Rundfunkhörers gesehen — verlockend ist, Aussicht auf Verwirklichung hat, scheint sehr zweifelhaft, soweit es sich um bereits errichtete Häuser handelt. Für neue Bauten läßt er sich vielleicht verwirklichen, falls der Nachweis erbracht werden kann, daß ganz allgemein die Bauherren sich gegenüber den berechtigten Forderungen der Rundfunkhörer ablehnend verhalten. Da aber — wie bereits ausgeführt wurde — die Baugenossenschaften und Baugesellschaften in immer steigendem Maße dazu übergehen, die Frage der Anbringung einer Hochantenne im Mietvertrag selbst oder in zusätzlichen Antennenverträgen in einer für den Rundfunkhörer durchaus tragbaren Weise zu regeln, wird man, jedenfalls für den gegenwärtigen Zeitpunkt, feststellen können, daß die Hauptträger des Wohnungsbaus den Forderungen nach Errichtung von Hochantennen keineswegs ablehnend gegenüberstehen. Falls die Dinge sich hier nicht grundlegend ändern sollten, wird es kaum erforderlich sein, die Gesetzgebungsmaschine in Tätigkeit zu setzen.

⁶⁾ Landgericht Oldenburg, Archiv für Post- und Fernmeldewesen [1951], S. 134; Landgericht Hagen vom 5. 9. 1952 — 6 S 121/52

⁷⁾ Rundfunk und Fernsehen [1953], Heft 2, S, 46

Neue Fernsehantennen und Antennenzubehör

Ahnlich wie das Fernsehen während der Funkausstellung in Düsseldorf zu einer bemerkenswerten Konzentration von Material geführt hatte, konnte auch an Hand des überreichen Angebotes an speziellen UKW-Antennen der Umfang abgeschätzt werden, den diese Technik nun in Deutschland bereits aufweist. Wenngleich die imposanten Formen der Hochleistungsantennen dem Techniker ein recht beruhigendes Bild gaben, so sei doch festgestellt, daß solche Aufbauten vom zukünftigen Durchschnitts-Fernsehteilnehmer wohl nur selten benutzt zu werden brauchen. Im normalen FS-Versorgungsgebiet kann man durchaus mit einfachen Antennen, die leicht zu montieren sind, befriedigenden Empfang erreichen. Dort, wo heute nur geringe Feldstärken verfügbar sind, muß man natürlich Hochleistungsantennen außtellen. Es ist allerdings zu erwarten, daß an einigen dieser Orte nach dem vollständigen Senderausbau Schwierigkeiten durch Interferenzen (Weitempfang) entstehen, die dann eine Umrüstung der Anlage notwendig machen.

Auf der technischen Seite sind die Probleme der UKW-Antennen aber so entschlossen von den verschiedensten Seiten aus angefaßt worden, daß es nun kaum eine Aufstellungs- und Montageforderung gibt, die nicht von irgendeiner Firma direkt aus dem Produktionsprogramm gelöst werden könnte. Als Neuerung in der technischen Entwicklung fiel auf, daß jetzt bei vielen Firmen FS-Antennen für das Band I (41 ... 68 MHz) verfügbar sind. Diese können jetzt schon zum Empfang von Zürich und Lopik benutzt werden, da beide Sender nach bisher vorliegenden Erfahrungsberichten in verschiedenen Gebieten auch bei uns recht gut aufgenommen werden.

Man ist bestrebt, die für diesen Frequenzbereich erforderlichen größeren Abmessungen mechanisch stabil auszuführen und sie evtl. durch elektrische Mittel zu verkürzen. Das Foto Abb. 1 zeigt die Ausführung von Förderer, bei der nicht nur kapazitätserhöhende Endscheiben an den Elementen angebracht sind, sondern zusätzlich ist die Mitte jedes Elements noch in einer kleinen Schleife aufgewickelt, so daß die Strahlerlänge nur unwesentlich größer als die eines normalen FM-Dipols ist. Des weiteren sind bei vielen Firmen Bemühungen erkennbar, dem zukünftigen "Mehrbandbetrieb" gerecht zu werden; nach dem end-

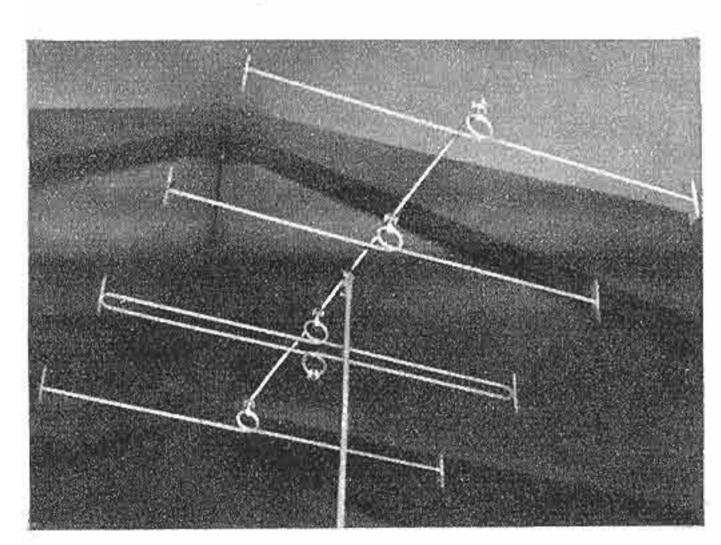


Abb. 1. Antenne für das Fernsehband I (Förderer)

gültigen Ausbau des Fernseh- und UKW-Rundfunknetzes ist mit Sendern im 50-, 100- und auch
im 200-MHz-Bereich zu rechnen. Getrennte Antennen für alle drei Arbeitsbereiche dürften vielerorts erhebliche Aufstellungsschwierigkeiten bereiten. Man darf gespannt sein, welche der verschiedenen Möglichkeiten, die in Düsseldorf gezeigt wurden, sich in Zukunft so durchkonstruieren lassen, daß sie tatsächlich eine UKW-Breitbandantenne darstellen und nicht nur einen —
wohl nur schwer vermeidbaren — Kompromiß.
Wisi bringt einige Formen, die als einfache Zusammenschaltungen bekannter Antennenarten aufzufassen sind und die zunächst in Kombinationen
für Band II (FM-Rundfunk) und FS-Band III ge-

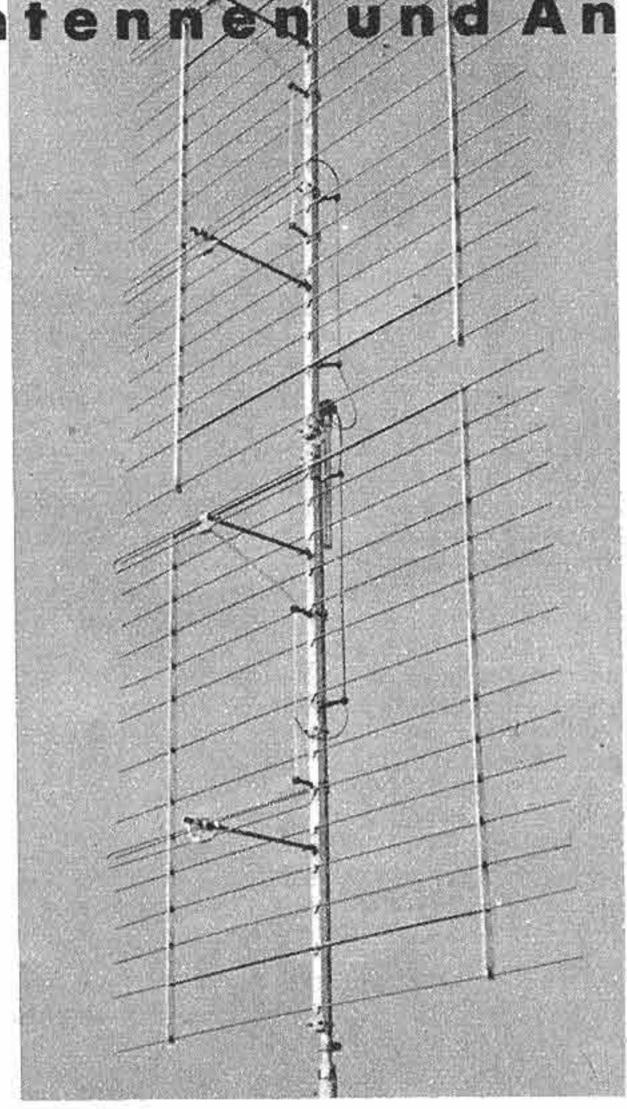
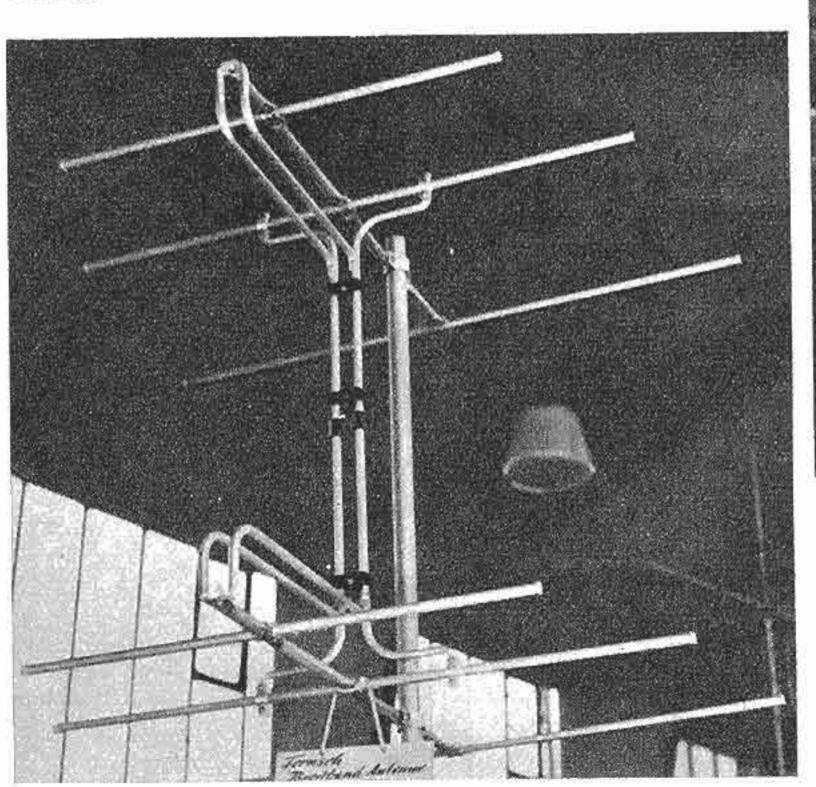


Abb. 2. Reflektorwand-FS-Antenne "F 640" (Kathrein)

führt werden. Demgegenüber konnte man bei Roka in der Doppel-V-Antenne eine neue Form sehen, die schon in der Erprobung recht gute Ergebnisse zeigte. Im Frequenzbereich 80 ... 210 MHz wird mit dieser Antenne in einer Ebene ein Leistungsgewinn von rd. 7 db erreicht. Das Doppel-V dürfte durch die elektrisch harmonischen Eigenschaften nach genügender Ausarbeitung eine der leistungsfähigsten Breitbandantennen darstellen. Nach einem ganz anderen Prinzip arbeitet die Helma-"Atlanta"-Antenne, bei der die Schleifenelemente um einen Hauptholm herum angeordnet sind und bei der die unvermeidlichen Nebenkeulen im Strahlungsdiagramm durch mehrere entsprechend abgestimmte Reflektoren in der Hauptstrahlrichtung zusammengedrückt werden.


Selbstverständlich ist eine Mehrbandantenne nur schwer genau so leistungsfähig zu machen wie eine optimal abgestimmte Einbandantenne. Dies hat beim Fernsehen deshalb eine große Bedeutung, weil zur Vermeidung von Geisterbildern besonders in Großstädten auf ausgeprägte Richtwirkung geachtet werden muß. Für extreme Forderungen dieser Art kann von Kathrein eine

Reflektorwand-Antenne (Abb. 2) geliefert werden. Diese Dipolgruppe, die sich auch in gestaffelter Ausführung zusammenbauen läßt, hat (in Analogie zum Siemens-Einheitsfeld für Sender) ein beträchtliches Vor-/Rückwärtsverhältnis, so daß die Rückseitenaufnahme praktisch zu vernachlässigen ist. Da in dieser Antenne nur Schleifendipole verwendet werden, ist der Aufbau ohne weiteres im ganzen FS-Band III verwendbar.

Es fehlt nicht an Bemühungen, auch die horizontal schärfer bündelnden Yagi-Antennen so breitbandig herzustellen, daß eine genaue Kanalabstimmung unnötig wird. Hierfür zeigte Fuba drei- bzw. vierelementige Yagis, deren Dimensionierung vom üblichen einigermaßen abweicht. In Abb. 3 sieht man z. B. einen sechselementigen Zwei-Etagen-Yagi, bei dem eine Stichleitung als "Impedanz-Kompensator" an jedem Richtdipol angebracht ist. Dieser Aufbau soll bei richtiger Abstimmung der Trafoleitung im Verein mit den unterschiedlichen Elementlängen im ganzen Band III reflexionsfrei an dem üblichen 240-Ω-Kabel zu betreiben sein.

Auch Baco hat seine mehrelementigen Fernsehantennen mit einem ähnlichen Transformationsstück, dessen Länge allerdings einstellbar ist, ausgerüstet.

Abgesehen von der Richtcharakteristik und dem Leistungsgewinn ist bei der Errichtung einer FS-Antenne auch die Aufstellungshöhe, d. h. die wirksame Antennenhöhe, von unter Umständen entscheidender Bedeutung. Nun ist das Aufrichten eines 5 ... 8 m hohen Mastes mit einer Zwei- oder Vier-Etagen-FS-Antenne erfahrungsgemäß nicht sehr einfach. Noch unangenehmer ist es, wenn irgendwelche Kontrollen oder gar Anderungen an einer solchen Antenne vorgenommen werden müssen. Für solche Fälle hat nun die Cuxhavener Maschinenbau Gesellschaft einen Kurbelmast geschaffen, der den Vorzug gegenüber früheren (wesentlich teueren) Ausführungen hat, daß die in Abb. 4 gezeigte Kurbelvorrichtung abnehmbar ist. Sie braucht deshalb vom Antenneninstallateur nur einmalig beschafft zu werden und ist dann für alle zukünftig aufzustellenden CMG-Periskopmasten weiter verwendbar. Mit dieser eleganten Methode kann ein einziger (!) Monteur beispielsweise eine Vier-Etagen-FS-Antenne mit einem 15 m hohen Mast aufstellen. Alle Kurbelmasten sind eingefahren etwa 3 m lang und für ausgefahrene Längen von 6...21 m lieferbar. Die Masten können also bequem in den Häusern auf den Boden oder das Dach gebracht werden; selbst-

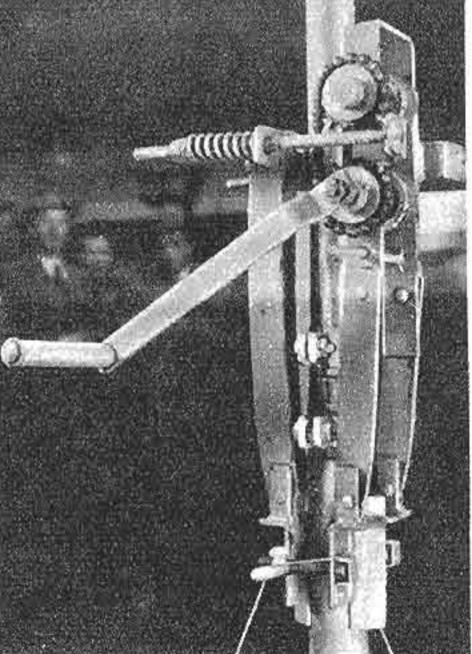


Abb. 3. 6-elementige Zweietagen-Yagi-Antenne mit Impedanzkompensator an jedem Dipol (Fuba)

Abb. 4. Abnehmbare Kurbelvorrichtung für Periskopmasten (Cuxhavener Maschinenbau-Gesellschaft)

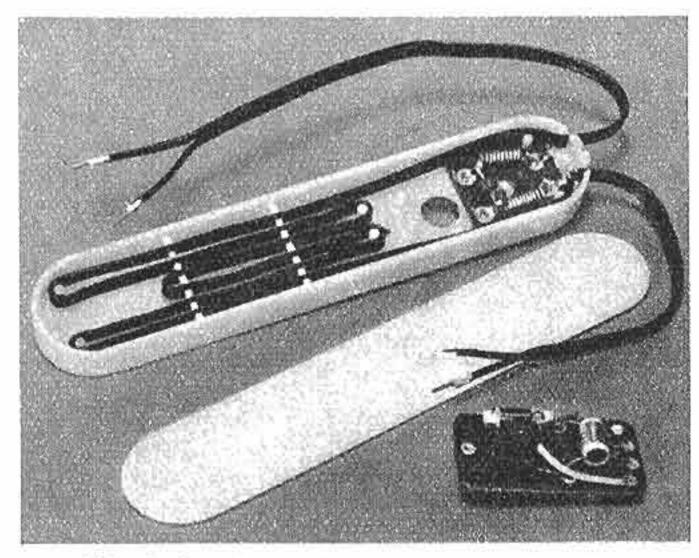


Abb. 5. Bandkabel für Transformationsglieder im Isolierstoffkästchen. Rechts im Foto: Symmetrierübertrager für Allwellenanlagen (Kathrein)

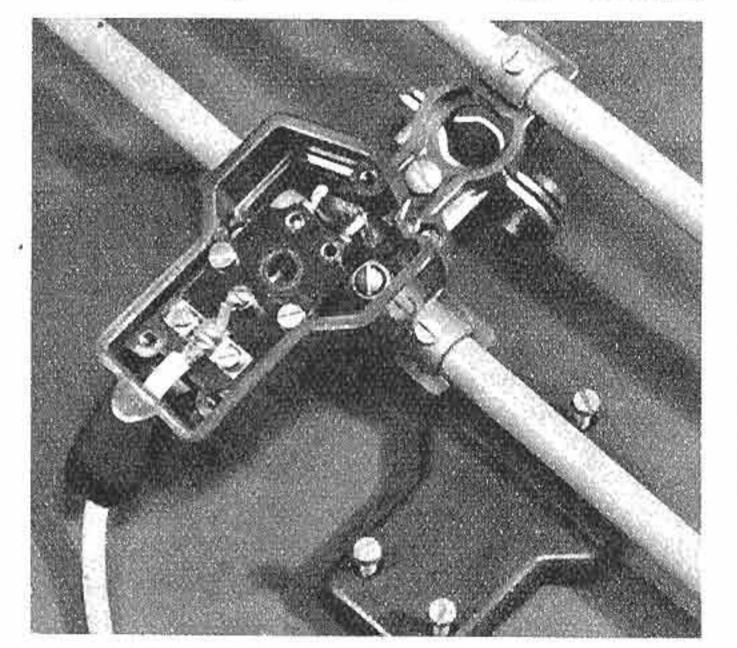
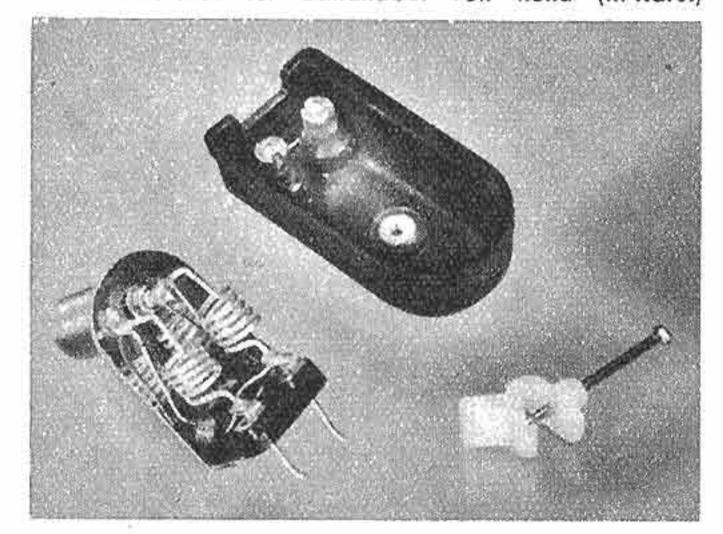



Abb. 6. Symmetrieübertrager "240/60" (Schniewindt)

Abb. 7. Im Koaxialstecker eingebaute FS-Boucherot-Symmetrierbrücke von Wisi und kleiner Zimmerisolator für Bandkabel von Roka (R. Karst)

verständlich sind die Erfordernisse des Blitzschutzes und der Abspannung wie bei anderen Masten zu berücksichtigen. Der entscheidende Vorteil dieser Kurbelmasten liegt jedoch in der spielend leichten Montage beim Aus- und Einfahren. Um gleich beim Antennenzubehör zu bleiben, sei festgestellt, daß natürlich die meisten der neuen Antennenformen für den Breitbandbetrieb und selbstverständlich auch die ausgearbeiteten Hochleistungsantennen stets einige Transformationsoder Ausgleichsglieder erfordern, die besonders an einer Kombinationsantenne nicht immer leicht unterzubringen sind. Hierfür hat nun Kathrein die im Foto Abb. 5 dargestellte sehr elegante Lösung gefunden, bei der die notwendige Bandkabellänge in einem Isolierstoffkästchen aufgewickelt untergebracht wird. Allerdings ist in dieser wettergeschützten "Aufbewahrung" des Kabels eine bestimmte Länge nun nicht mehr nur mit dem Verkürzungsfaktor des Kabels zu bestimmen, sondern sie ist geringfügig länger, was eingemessen werden muß. Unten rechts in Abb. 5 sieht man außerdem einen Symmetrierübertrager, wie er für Allwellenanlagen gebraucht wird. Dieser ist insofern bemerkenswert, als hier nicht nur LMK mit einem Schalenkernübertrager verarbeitet wird, sondern auch für die UKW-Bereiche Ferritkerne benutzt werden. Allgemein scheint sich überhaupt (vielleicht durch die Erfordernisse der Gemeinschaftsanlagen bedingt) die Verwendung von Koaxialkabel langsam etwas mehr durchzusetzen. Trotz der meistens erheblich niedrigeren Anlagekosten mit Bandkabel ist die geringe Störanfälligkeit doch so überzeugend, daß man bei fast allen Firmen Symmetriervorrichtungen findet. So zeigt Abb. 6 den Symmetrierübertrager 240/60 von Schniewindt, während Abb. 7 die im Koaxialstecker eingebaute FS-Boucherot-Symmetrierbrücke von Wisi erkennen läßt.

Auch im Montage- und Verlegungsmaterial ist eine erhebliche Anzahl von neuen Formen auf dem Markt. Angefangen vom "Kleinen Berliner" von Roka, einem extra kleinen Zimmerisolator für Bandkabel, über die aus Starkstrom-Feuchtraumschellen entstandenen Bandkabelhalter von Schniewindt (Abb. 8) und den Bandkabel-Abstandsisolator für Seilbefestigung (Kathrein) bis zu Bandkabelblitzschutzautomaten, die von verschiedenen Firmen hergestellt werden, ist so ungefähr alles vorhanden, was den UKW-Antennenbau zu einem Vergnügen macht.

Auch für besonders schwierige Stellen, wie sie doch beispielsweise die selten leicht zugängliche Dachrinnenüberführung darstellt, ist eine gut durchdachte Konstruktion geschaffen worden, die eine gewisse "Fernmontage" gestattet. Diese Dachrinnen-Kabelstütze von Hirschmann kann ohne Leiter nur mit Hilfe eines — möglicherweise 2 ... 3 m langen — Holzstiels an der Dachrinne angeschraubt werden.

Abschließend sei festgestellt, daß es bei den vielen neuen handelsüblichen Antennen-Materialien Behelfs- oder gar Gewaltlösungen, die doch immer störanfällig sind, in Zukunft nicht mehr zu geben braucht. Sachkenntnis vorausgesetzt! Um dem interessierten Fachmann einen schnellen Überblick über das Produktionsprogramm der einzelnen Firmen zu ermöglichen, wurde hier eine Tabelle der Typenbezeichnungen von Fernsehantennen aus vorliegenden Firmenunterlagen zusammengestellt. Normalerweise begnügen sich die Firmen mit der Herstellung von bestimmten Standardtypen, die durch entsprechendes Ergänzungsmaterial praktisch bis zu beliebigem Aufwand erweitert werden können. Kombinations- und Gemeinschafts-Antennen sind nicht mit aufgenommen worden.

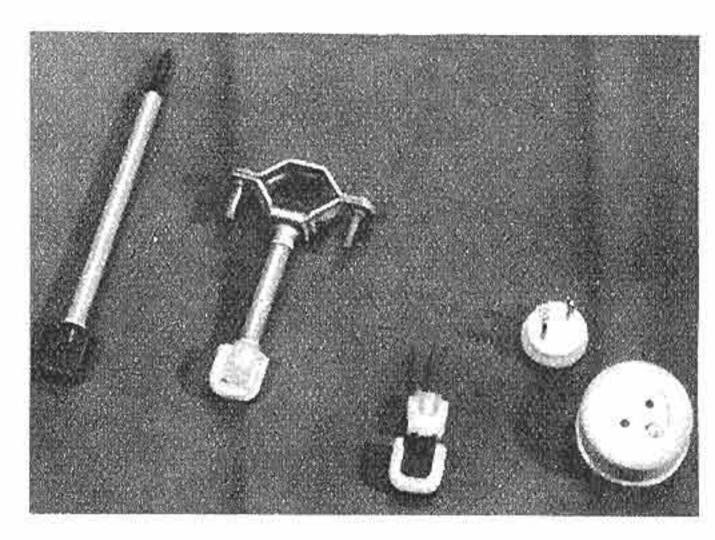


Abb. 8. Von links nach rechts: Bandkabel-Abstandsisolatoren, Bandkabelhalter und Antennenleitungsstecker und -Steckdose der Fa. Schniewindt

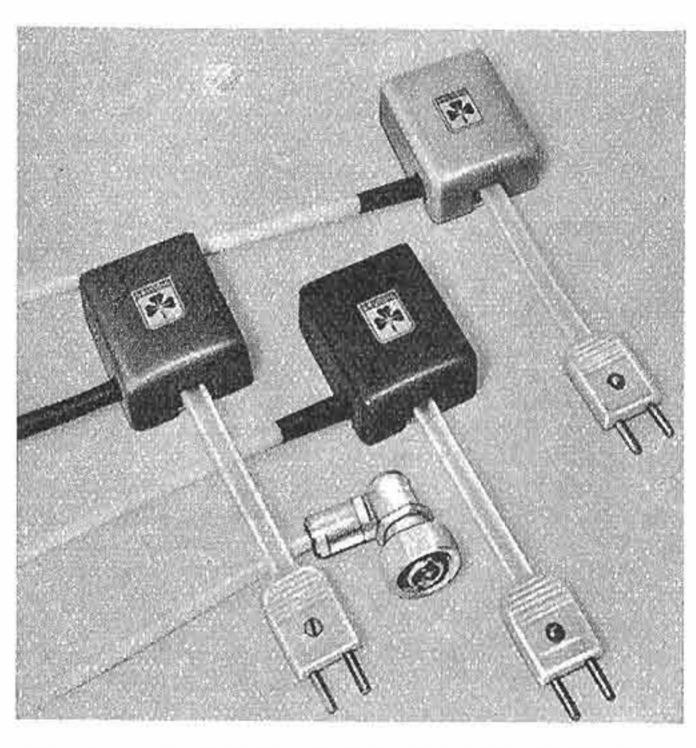
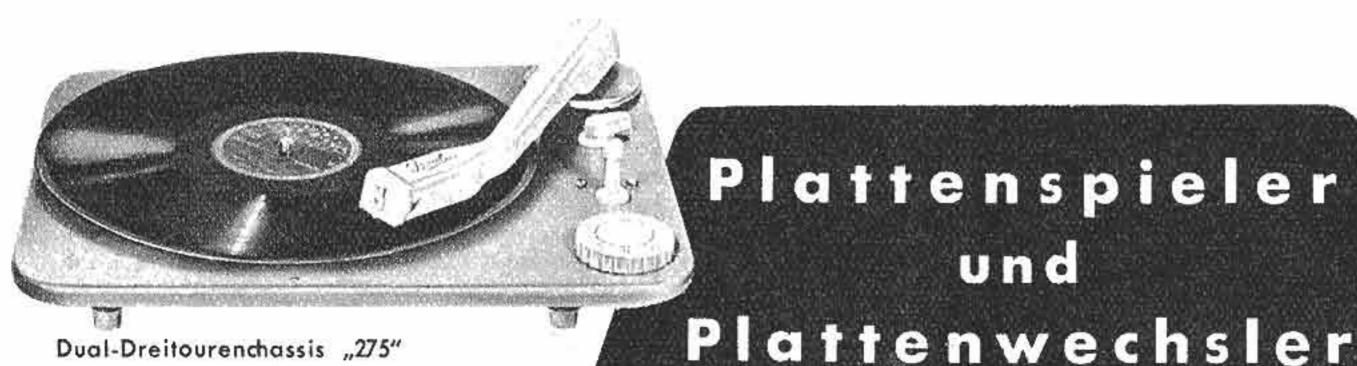



Abb. 9. Antennensymmetrierglieder von Grundig für den Übergang von 60 Ohm konzentrisch auf 240 Ohm symmetrisch in drei Ausführungen, und zwar für Band I = 40 ... 70 MHz, Band II = 75 ... 105 MHz, Band III = 170 ... 225 MHz

Typenbezeichnung der Fernsehantennen

Hersteller	Dipol	Richt- Dipol	3-Element- Yagi	4-Element- Yagi	2-Etagen- Richt-Dipol	2-Etagen- 3-ElYagi	2-Etagen- 4-ElYagi	4-Etagen- Richt-Dipol	4-Etagen- 3-ElYagi	4-Etagen- 4-ElYagi	Band
Astro	1200 1100	1210 1101	1230 1102	1240	1250	1270	1280	1285		1290	II
Bako	811	811/2	811/3	811/4	1611/2	1611/3	1611/4	3211/2	3211/3	3211/4	II
Engels	6004	6016 6091	6032	6038 6095		6062	6077 6099	6080	6087		11
Förderer	127	128		134 136							11
FubaFSA						821	631		1621	1231	II
HirschmannFesa		100	200/300 1200		2100			600		/:	11
Helma	100 106	100 R 106 R	100 HY 3 106 HY 3	100 HY 4 106 HY 4	200 R 206 R	100 HY 6 106 HY 6	100 HY 8 106 HY 8	400 R 406 R	100 HY 12 106 HY 12	100 HY 16 106 HY 16	11
Kathrein F	500	501	510		2×501	2×510		4×501	4×510	641	II
Lumberg	500	505	510	515 525	520		-				II
Roka Ako	2313	2313 R	2313 RD	2313 RDD	2 x—R	2 x-RD	2 x—RDD	4 x—R	4 x—RD	4 x—RDD	11
SchniewindtCSN	101	103	105	111	2103	2—105	2111	4103		4111	11
Telo		213/53	6				į.			18	II
Wisi	260 F	260 FR 267 HO	260 FRD 267 Ho α	260 B 1	261	262—1	263—1	264		2661	11

Plattenspieler und

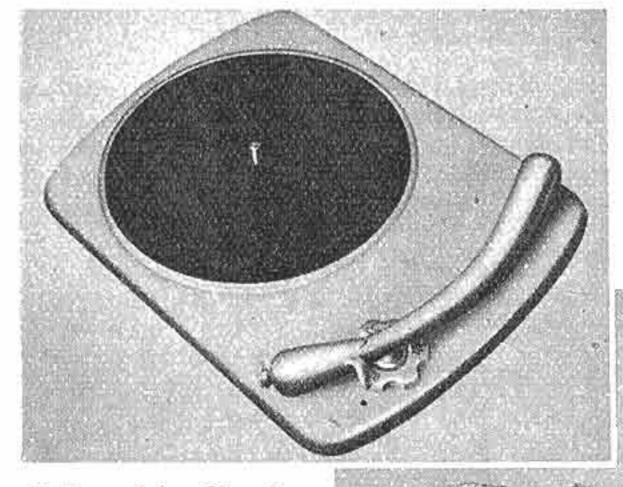
Dual-Plattenwechsler "1022 F"

Dual-Dreitourenchassis "275"

In den letzten Jahren vollzog sich auf dem Gebiet der Schallplattentechnik eine Umwandlung, die man nach dem Urteil der Fachleute als den bedeutendsten Fortschritt seit ihrem Bestehen bezeichnen kann. Die rausch- und völlig kornfreien Vinylite-Massen gestatten es, Schallplatten ohne Grundgeräusch herzustellen. Diese Tatsache schuf die Voraussetzung, Platten mit verringerter Umdrehungszahl und längerer Spieldauer auf den Markt zu bringen. In Deutschland erschien zunächst die Langspielplatte mit 331/3 U/min und 25 bzw. 30 cm Durchmesser zu einem entsprechend hohen Preis. Die nunmehr gestartete 17-cm-Platte sichert der Langspieltechnik den großen Publikumserfolg. Man ist sich darüber einig, daß diese auch in preislicher Hinsicht den Wünschen eines großen Abnehmerkreises entsprechende Platte vor der 331/3-U/min-Langspielplatte hätte erscheinen sollen. Die 17-cm-Platte wird sich in kürzester Zeit einen großen Freundeskreis erobern; fast alle Schallplattenfabrikanten nahmen sie in ihr Programm auf.

Die moderne Schallplattentechnik paßt sich dem hohen Stand der Elektroakustik weitgehend an. Die Schallplattenhersteller erkannten rechtzeitig, daß gerade in Deutschland das Qualitätsprinzip die Zukunftsentwicklung maßgeblich beeinflussen wird. Je nach dem gewünschten Repertoire und nach dem Käuferkreis, an den sich die einzelnen Schallplatten wenden, stehen heute für die Plattenfertigung die drei Norm-Umdrehungszahlen 78, 45 und 331/3 sowie die Normal-, Mikro- und Füllschrift zur Verfügung. Es besteht kein Zweifel, daß die 78-cm-Platte mit 25 und 30 cm Durchmesser technisch überholt ist, allerdings mit Rücksicht auf die große Zahl der noch vorhandenen eintourigen Plattenspieler weitergeführt werden muß, und ferner das Repertoire laufender Ergänzungen bedarf.

Auch die Hersteller von Plattenspielgeräten erkannten die sich bietenden Möglichkeiten und schufen Plattenspieler und -wechsler hoher elektrischer und mechanischer Qualität. Die modernen Wiedergabegeräte eignen sich für Platten der genormten Umdrehungszahlen, Schriftarten und Plattengrößen. Sie sind ausgesprochen zukunftssicher. Der Antrieb der Dreitourenlaufwerke kann einfach und betriebssicher umgeschaltet werden. An die Stelle des bisherigen zentral angetriebenen Plattentellers ist der randangetriebene getreten. Ferner sind die Chassis, so konstruiert, daß man sie federnd im Gehäuse aufhängen kann. Damit wird eine verzerrungsfreie Wiedergabe erzielt, da der Körperschall des Lautsprechers nicht mehr zum Laufwerk gelangt.


Eine gewisse Schwierigkeit scheint zunächst für das Abspielen der 17-cm-Platten mit 45 U/min gegeben zu sein, da das Zentrierloch dieser Platten 38 mm Durchmesser hat, während der Lochdurchmesser der bisher üblichen Schallplatten 7 mm ist. Für das Einfachlaufwerk stellen die Plattenfabrikanten passende Zentrierscheiben (Bobby) und für die Wechsler geeignete Abwurfvorrichtungen mit großem Mittelloch zur Verfügung (z. B. Dual).

Der Fonoindustrie war andererseits die Aufgabe gestellt, neue Tonabnehmersysteme mit großem Frequenzbereich, hoher Ausgangsspannung, geringem Auflagegewicht und umschaltbären Safiren für Normal- und Mikrorillenschrift-Abtastung zu entwickeln. Der moderne, umschaltbare Tonabnehmer auf piezoelektrischer Grundlage entspricht mit einem Auflagegewicht von weniger als 10 g und einem Frequenzbereich bis etwa 10 000 Hz diesen Anforderungen. Obwohl es hochwertige Magnetsysteme mit einer Eigenresonanz außerhalb des Hörbereichs und erweitertem Frequenzbereich gibt, hat sich der preiswerte Kristalltonabnehmer insbesondere durch seine hohe Ausgangsspannung den Markt erobert. Auf moderne Tonabnehmer und Plattenspieler konnten wir teilweise schon in

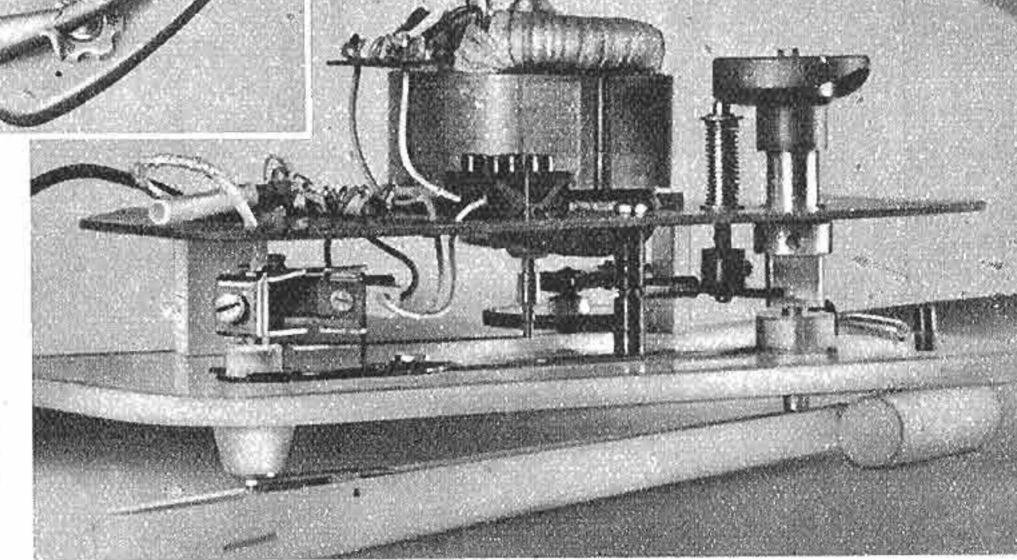
unseren Vorberichten zur Funkausstellung eingehen (z. B. FUNK-TECHNIK, Bd. 8 [1953], H. 17, S. 516, "Einzelteile und Fonogeräte"; FUNK-TECH-NIK, Bd. 8 [1953], H. 16, "Vom Einfachplattenspieler bis zum Fonokoffer" (S. 495), "Das neue Elac-Tonabnehmer-System KST 8 A" (S. 496). Die folgende Übersicht gibt einen Überblick über das interessante Angebot der Funkausstellung, soweit wir nicht schon darüber berichtet haben.

Viel beachtet wurde der Plattenwechsler Akkord-"Joboton 5", ein Allzweckgerät hoher Preiswürdigkeit, der sämtliche 17-cm- und 25-cm-Platten für 78, 45 und 331/3 Umdrehungen spielt und wechselt, nach der letzten Platte selbsttätig abstellt und während des Spielens jede Platte unterbrechen und überschlagen kann. Es lassen sich ferner sämtliche Plattensorten der drei Geschwindigkeiten abspielen. Der Präzisionsmotor hat selbstschmierende und selbsteinstellende Lager und ist schwingungssowie brummfrei. Safirnadeln und Tonabnehmer sind leicht auswechselbar. Das Tonarm-Auflagegewicht ist 9 g.

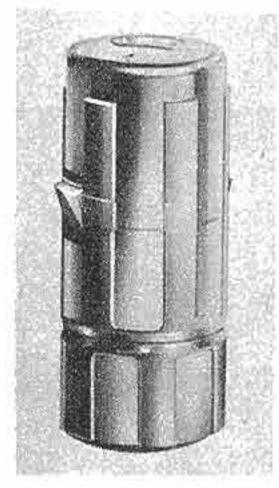
Braun rüstet Tischplattenspieler und Musikschränke mit dem Fono-Chassis "777 W" aus, das ein Dreitourenlaufwerk und den hochwertigen Kristall-Tonabnehmer Braun-"Micro" verwendet. Die Tonabnehmerkapsel mit zwei stoßgeschützten Safiren (Frequenzbereich 50 ... 10 000 Hz) ist drehbar. Der leichte Plattenteller erscheint mit einer praktischen Gummiauflage. Das "Dual"-Programm von Gebr. Steidinger enthält u. a. das Dreitouren-Plattenspieler-Chassis "275", eine hochwertige Neuentwicklung mit Breitband-Kristall-Tonabnehmer und einem kräftigen, magnetisch geschlossenen Asynchronmotor. Der Dual-Tonabnehmer verwendet einen ganz aus Plexigum bestehenden Tonarm. Er ist frei von Eigenresonanzen, horizontal und vertikal kugelgelagert und hat geringe Lagerreibung. Das Dual-Kristallsystem mit zwei Saffren befindet sich in einem herausziehbaren Kopf mit Hebelumschalter. Der Frequenzbereich ist für 20 ... 15 000 Hz ausgelegt. Eine Besonderheit bildet die automatische Kurzschlußeinrichtung, die Auslaufgeräusche in den Leerrillen vermeidet. Beachtenswert sind die geringen Auslenkkräfte des Systems. Sie liegen beim Abtasten von Mikrorillen unter 2 g. Der Plattenspielermotor hat ein geringes magnetisches Streufeld und eine ideale Aufhängung. Eigengeräusche sind auf ein Minimum verringert. Infolgedessen kann das Plattenspieler-

Plattenspieler-Chassis "Graworette"

Seitenansicht des Drei-Touren - Plattenspieler-"Graworette" chassis


Chassis auch in Verbindung mit Magnettongeräten betrieben werden. Weitere Vorzüge sind u. a.: geringer Stromverbrauch (8 W), Antrieb am Tellerrand über Reibradgetriebe sowie automatische Getriebeentlastung bei der Abschaltung und bei Transportstellung. Ubrigens ist die Grundplatte stabil und verwindungsfrei ausgeführt. Die Federaufhängung hat mit dem Chassis feste Verbindung.

Auch der neue Dual-Universal-Wechsler "1002 F" benutzt das beschriebene Breitband-Kristallsystem und den kräftigen Asynchronmotor. Er ist gegenüber früheren Ausführungen verfeinert worden und gestattet, auch die neuen 17-cm-Platten zu

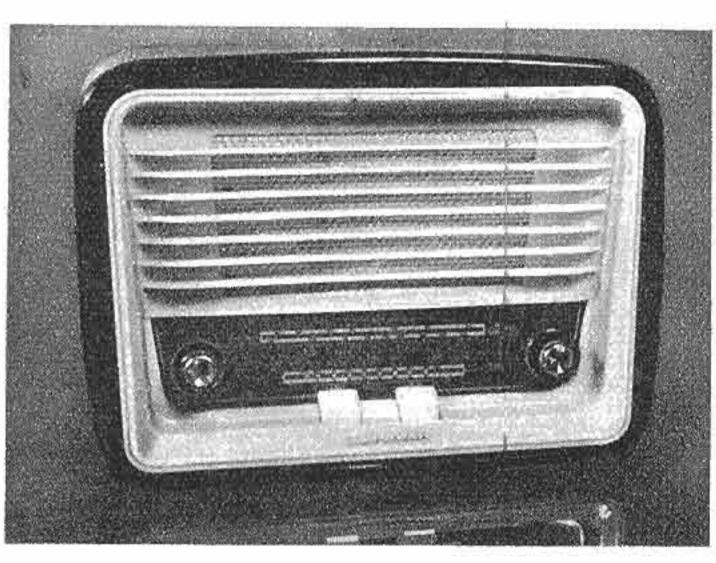

wechseln. Die neue Spezial-Abwurfvorrichtung nimmt bis zu 12 dieser Platten auf und bietet den Vorteil, daß sich lediglich der untere Teil mit dem Plattenteller dreht, während der obere feststeht und eine Reibung der Platten untereinander während des Abspielens verhindert. Plattenspieler "275" und Plattenwechsler verwenden ein dreistufiges Geräuschfilter. Der Quecksilberschalter gestattet eine rückstoßfreie Ausschaltung.

Ein Schweizer Erzeugnis ist der neue Dixton-Plattenwechsler, der von G. A. Henke, Tuttlingen, angeboten wird. Dieses moderne Fonogerät wechselt gemischt 12 Platten aller Durchmesser (17 cm, 25 cm, 30 cm). Die Umschaltung des Tonabnehmers für Normal- oder Langspielplatten erfolgt mit Hilfe einer kleinen, oben im Tonabnehmerkopf angebrachten Rändelscheibe. Eine neue Stapelwelle nutzt den Luftkissen-Effekt aus und sorgt

für weichen Plattenabwurf. Dieser für alle Geschwindigkeiten eingerichtete Plattenwechsler kann in verschiedenen Farbtönen und ferner auch in drei Kofferausführungen geliefert werden.

Einen neuen Plattenwechsler ("C 6") bietet auch der Paillard-Bolex-Vertrieb an, der Schallplatten von drei verschiedenen Durchmessern (17, 25 und 30 cm beliebig gemischt) nacheinander automatisch abspielt. Der Plattenwechsler ist selbstverständlich auf drei Geschwindigkeiten umschaltbar. Er gestattet, zwischen zwei Platten eine beliebig lange Pause einzuschalten oder die Wiedergabe einer Platte zu unterbrechen und automatisch auf die nächste Platte mit oder ohne Zwischenpause überzugehen. Die Bedienung vereinfacht sich durch den Zentralschalter. Ein einziger Knopf betätigt sämtliche automatischen Schaltvorgänge. Durch diesen Schalter wird Fehlbedienung weitgehend vermieden. Ferner ist die Zentralspindel so ausgeführt, daß die Platten weich fallen. Die Verteilerachse schont das Plattenloch. - Der Plattenstapel wird durch einen Sporn gehalten, während sich die

Abwurfvorrichtung für das Wechseln von 17-cm-Platten mit 38-mm-Loch im Dual-Plattenwechsler "1002 F"


untere Platte stoß- und geräuschlos auf den Plattenteller senkt.

Das Philips-Fono-Programm, über das wir schon in Heft 16 [1953] der FUNK-TECHNIK, Bd. 8 [1953], S. 495, berichten konnten, schöpft die Absatzmöglichkeiten auf dem Fonogebiet weitgehend aus und

bietet neben typischen Einbaugeräten für Industrie und Fachhandel verschiedene zukunftssichere Konsumgeräte. Eine vom Fachhandel begrüßte Neuerung ist u. a. die in einem gefälligen Koffer erscheinende Plattenwechslerbox. Sie enthält den bekannten Philips-Plattenwechsler und leistet vor allem bei der Durchführung von Ubertragungen vorzügliche Dienste. Sämtliche Philips-Fonogeräte sind für drei Geschwindigkeiten eingerichtet und zum Abspielen aller Plattengrößen mit Normalund Mikrorillen, einschließlich der neuen 17-cm-Platten, geeignet. Für die Wiedergabe der 17-cm-Platten mit den Philips-Plattenwechslern wird eine stärkere Zentralachse zum Aufsetzen geliefert. Als neuestes Erzeugnis der Grawor-Serie stellt die Firma E. Rüsing KG das elegante und formschöne Dreitourenlaufwerk "Graworette" vor. Es ist eine neuzeitliche Konstruktion mit einem gefälligen Tonabnehmer aus Polystyrol-Kunststoff, der das umschaltbare Ronette-Kristallsystem "P" verwendet (Frequenzbereich 30 ... 12 000 Hz). Der

Asynchronmotor mit Stufengetriebe ist stabil aus-

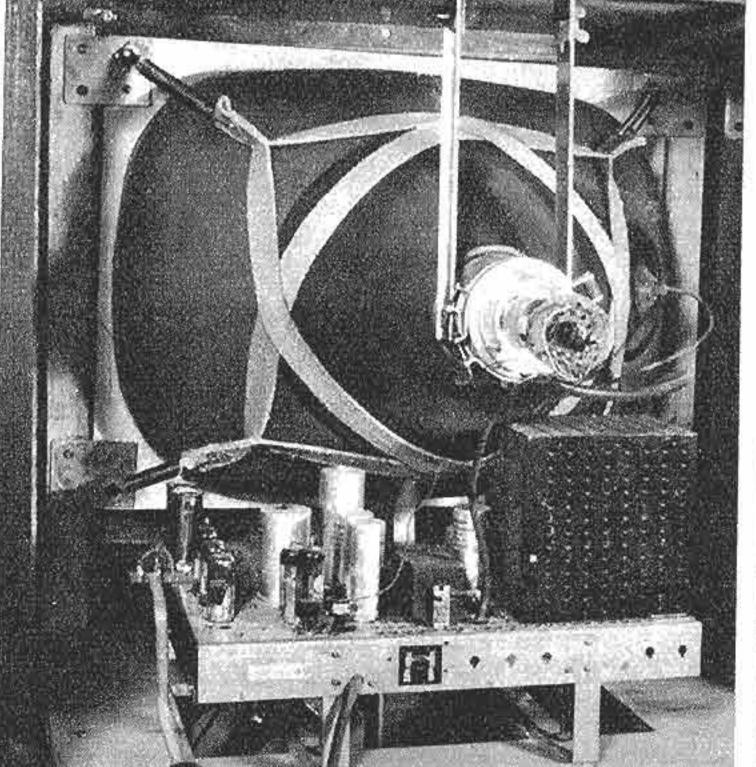
Wir besnehten: Deutsche Industrie-Ausstellung

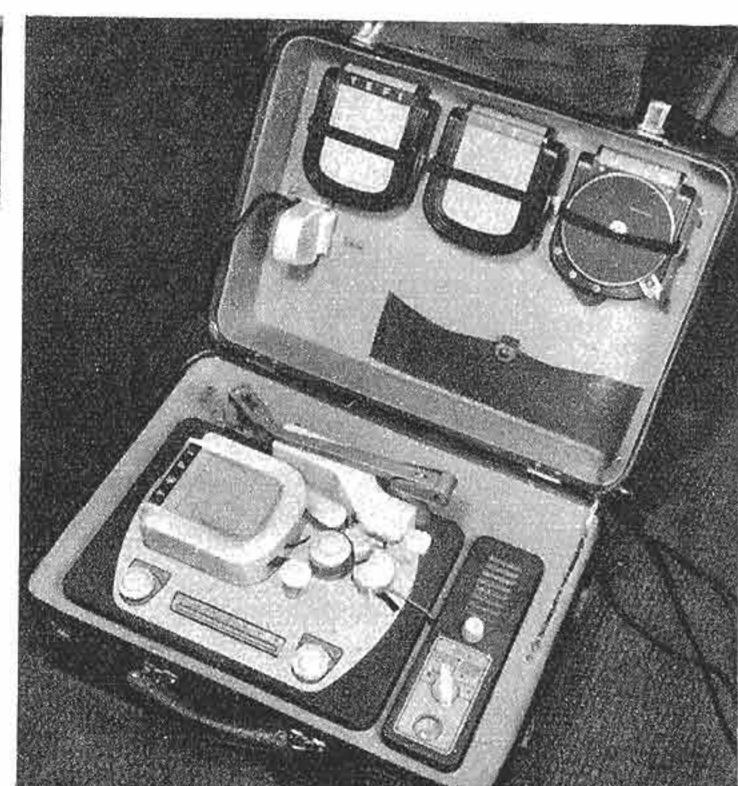
"Jubilate", ein neuer Empfänger von Telefunken

Ein neues Gerät, der praktische Radiotisch von Loewe Opta, ist mit dem Chassis des "Gildemeister" ausgerüstet

Blick in das Chassis des Loewe-Opta-Fernsehempfängers "FE 520—54 S" mit 52-cm-Bildröhre (Diagonale)

Daneben: Das "Tefifon" zum Abspielen von Tefi-Schallbändern, Schallplatten und zur Magnettonband-Aufnahmeund -Wiedergabe in Kofferausführung


Allzuviele Neuheiten waren, kurz nach der Beendigung der Düsseldorfer Funkausstellung, in Berlin gewiß nicht zu erwarten. Die namhaftesten Firmen hatten es sich jedoch nicht nehmen lassen, in den repräsentativen Ausstellungshallen Niederlassungen einzurichten; von Ständen konnte man bei den großen Ausstellungsflächen schon nicht mehr reden. Wer still beobachtend durch die Halle I West streifte, machte sehr schnell die beruhigende Feststellung, daß das Fernsehen keine Sensation mehr ist, sondern sich als Selbstverständlichkeit organisch in die Ausstellung und in das Bewußtsein der Besucher eingegliedert hat. Etwas abgedunkelte, zum Teil mit Sitzgelegenheiten ausgestattete Firmenkabinen ließen die ungestörte Betrachtung der vom Berliner Sender übernommenen Fernsehsendungen zu. Mit einer besonders großen Bildröhre im betriebsfähigen Empfänger konnte außer Grundig auch Loewe-Opta aufwarten, deren "FE 520-54 S" mit einer 52-cm-Bildröhre (Diagonale) ausgerüstet war. Der Drang zum größeren Bildformat trat auch beim Nora-"Belvedere" (neu bestückt mit einer Bildröhre mit 43 cm Diagonale) hervor. Aber gerade für die preisgünstigsten kleineren Empfänger aller Firmen mit kleineren Bildflächen (z.B. 220×300 mm) interessierten sich die Besucher besonders.


Blaupunkt, Grundig, Körting, Loewe-Opta, Lorenz, Nora, Philips, Saba und Telefunken hatten eigene Stände; sie waren ferner auf der großzügigen Gemeinschaftsschau des Deutschen Radio- und Fernsehlachverbandes Berlin E. V. vertreten. Dort gesellten sich außerdem Rundfunk- und Fernsehempfänger von Braun, Graetz, Imperial, Jotha, Krellt, Mende, Metz, Siemens, Schaub und Tonlunk hinzu. Meßgeräte und Antennen verschiedener Firmen vervollständigten auf diesem Stand das Angebot. Erstaunlich war auch in Berlin das große Interesse für Musiktruhen und selbst für große, kombinierte Fernsehtruhen; wie zahlreiche andere Hersteller boten auch Kuba und Pawerphon (auf eigenen Ständen) große Auswahl in allen Preislagen.

Zwei ganz neue Rundfunkempfänger bescherten uns Loewe-Opta und Telefunken. Loewe-Opta ist kurzentschlossen mit ihrer neuesten Schöpfung, einem formschönen Radiotisch, von der derzeitigen Moderichtung abgewichen und hat, wenn man den Beifallskundgebungen der Hausfrauen trauen darf, einen Erfolg errungen. Im Jubeljahr (fünfzigjähriges Bestehen) schuf Teletunken noch den "Jubilate", einen preiswerten Empfänger (etwa 200 DM) im Holzgehäuse mit eingesetztem Preßstoff; er hat im allgemeinen die Schaltung des "Adagio", jedoch ohne KW und ohne Magisches Auge.

Philips brachte als interessante Besonderheit die Fließbandfertigung von Plattenspielerchassis, die nach dem Zusammenbau fertig verpackt und ausgeliefert wurden. Mit dieser gelungenen Vorführung konnte der sichtbare Erfolg der deutschen Fonogeräte-Industrie unterstrichen werden. Um aus dem Fonogebiet wenigstens noch einige Neuheiten herauszugreifen, sei erwähnt, daß der Teli-Apparatebau sein "Tefifon" auch als Koffergerät zeigte und daß W. Knapprich & Co. mit dem "Phono-Recorder" ein Aufsatzgerät für Plattenspieler (bzw. Plattenwechsler) vorwies, mit dem sich endlose Schallbänder bequem abspielen lassen. Ging man zur Halle IX, dann war bei G. Wiegandt & Söhne, Berlin, nach dem Einwurt eines Geldstückes zu bewundern, wie eine durch Druckknopf gewählte Schallplatte vom Stapel abgehoben wurde, ihre Rillen dem Tonabnehmer des Automaten anbot und über den eingebauten Verstärker und Lautsprecher die bereits bezahlte Musik preisgab. Und wer für Hawaiklänge schwärmte, konnte sich bei Teske-Electric-Musik, Berlin (Halle I West), eine an die Tonabnehmerbuchsen des Rundfunkempfängers direkt anschließbare Hawai-Gitarre oder einen magnetischen Tonabnehmer für vorhandene Instrumente erwerben. Musik, und zwar in bester Vollendung, fand man auch beim Apparatewerk Bayern, das ihre elektronische "Polychord"-Orgel vorführte.

Besonders bemerkenswert unter den Mikrofonen ist das von Telefunken gemeinsam mit Neumann entwickelte, sehr kleine, hochqualitative Kondensatormikrofon (Druckmikrofon mit Kugelcharakteristik; Empfindlichkeit 1,3 mV/µbar; 20 mm Ø,

geführt und ausgesprochene Qualitätsarbeit. Das Motoraggregat wird an einer Platte befestigt, die mit 6 Schrauben am Bakelitchassis montiert ist. Geringe Leistungsaufnahme (7,5 W) und kleiner Auflagedruck des Safirs (etwa 10 g) sind weitere Vorzüge. Beim Transport treten keine Getriebebeschädigungen auf, da man die Nullstellung leicht einrasten kann. Die Laufwerke sind in aparten Farbkombinationen lieferbar, um den verschiedenen Exportwünschen zu entsprechen.

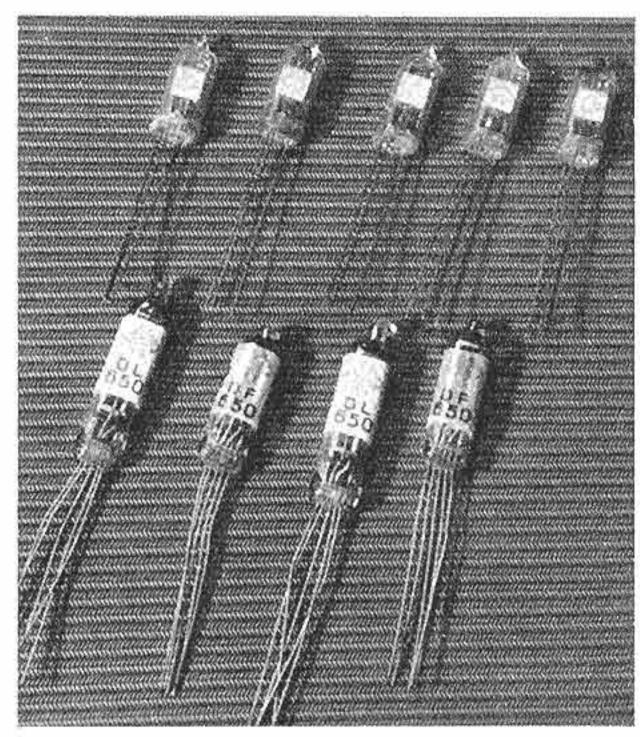
Die bekannte Telefunken-Fono-Serie "Musikus" bietet vom einfachen Plattenspielerchassis bis zum Plattenspieler mit eingebautem Verstärker und Lautsprecher reiche Auswahl. Sämtliche Geräte berücksichtigen die neue 17-cm-Platte.

Für den Schallplattenfreund fertigen verschiedene Firmen Zubehör für den Einbau in Musikschränken oder für die Modernisierung der vorhandenen Plattenspieler. Marckophon bringt als Neuerungen automatische Tonmöbel-Schalterfassungen in Flachform und in Tropfenform mit Ruhestromoder Arbeitskontaktschaltung in verschiedenen Farbtonen sowie eine neue Lampenfassung, die auch mit aufsteckbarer thermoplastischer Blendkappe erhältlich ist. Für die Aufbewahrung des wertvollen Plattenmaterials liefern die gleiche Firma sowie Plattotix stabile Plattenständer. Die Plattofix-Ständer haben Rollen und Metallschienen und werden beim Offnen der Türen automatisch herausgezogen. Sehr praktisch für die Aufbewahrung von Langspielplatten ist eine in unterschiedlichen Größen erhältliche Schatulle. Die Langspielplatten werden waagerecht auf Drahtgittern aufbewahrt, die mit Filz bespritzt sind. Das Nummernregister ist versetzt und dadurch übersichtlich.

Zum Schluß sei noch auf neue Tonfolien hingewiesen, die für den Tonfolienamateur, für Tonstudios usw. Interesse haben. Die "Palafon" (Pappe-Lack-Folie)-Tonfolie wurde für Grußsendungen entwickelt und verwendet als Träger eine Spezialpappe. Sie ist ausgesprochen preiswert, entspricht aber trotzdem allen Anforderungen einer guten Folie. Der verwendete Träger ist nicht hygroskopisch. Der Tonfolienlack bietet Gewähr für gute Schneidbarkeit und naturgetreue Wiedergabe. Die geschnittenen "Palafon"-Tonaufnahmen können als Warenprobe in einem starken Briefumschlag mit einer Papprückwand versandt werden. Es stehen drei Ausführungen mit 15 cm ∅, 20 cm Ø und im Postkartenformat 12×15 cm zur Verfügung.

Für hochwertige Aufnahmen ist die chemisch härtbare "Durodisk"-Aufnahmeplatte der Firma J. H. Saueressig KG bestimmt. Sie verwendet einen Glasträger, der beiderseits mit einer Schicht von etwa 0,15 mm bedeckt ist. Dadurch erhält sie hohe Festigkeit und Bruchsicherheit und übertrifft in dieser Hinsicht die handelsübliche Schellack-Industrieplatte. Die "Durodisk"-Platte ist unbegrenzt haltbar, wird in weichem Zustand geschnitten und nach der Aufnahme chemisch oder durch Hitze gehärtet. Nach der Härtung hat die Platte eine hohe Schleißfestigkeit und ist bei Verwendung guter Tonabnehmer mit handelsüblichen Nadeln ohne weiteres abspielbar.

Berlin 1953

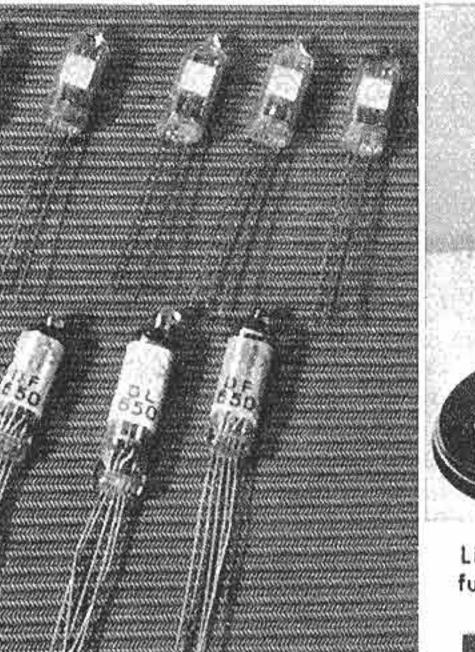

120 mm ganze Länge; Frequenzbereich 30...18 kHz; Ersatzlautstärke 18 Phon; Gewicht 100 g komplett; sämtliche Übertragungselemente einschl. Ausgangstrafo sind in der kleinen Flasche untergebracht; das Netzgerät ist nach einem neuen Stabilisierungsverfahren voll stabilisiert). Von anderen Firmen ausgestellte Mikrofone und auch Lautsprecher wurden bereits in unserem Neuheitenbericht in Heft 19, S. 606, eingehend behandelt.

Bei Isophon erfuhren wir noch, daß u.a. beim Publikum die Lautstrahler (z. B. "Melodie") sehr ansprechen. Die C. Lorenz AG bot mit ihrer "Celophon"-Reihe eine wohlabgewogene Lautsprecherserie, bei der durch genau abgestimmte Luftpolster störende Resonanzen und Einbrüche in die Frequenzkurve abgeflacht sind.

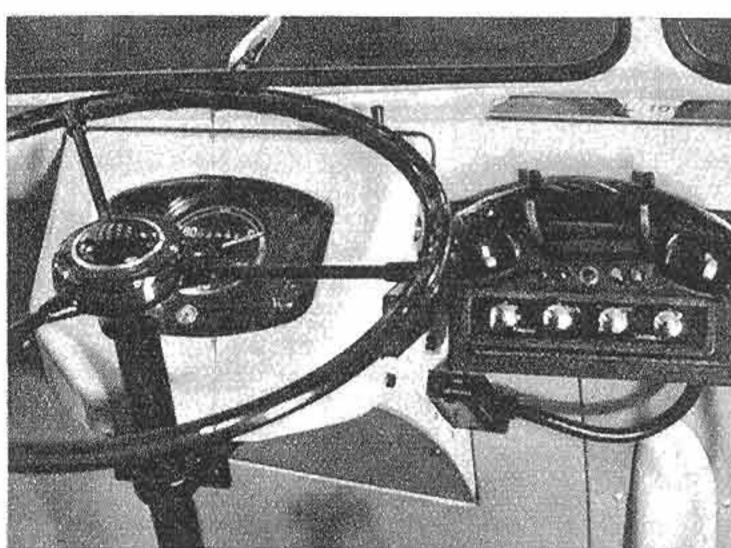
Auf den Spezialgebieten der Sendetechnik, des kommerziellen Empfängerbaues und der Funkortungsanlagen usw. bewiesen Lorenz, Siemens und Telefunken ihre besondere Leistungsfähigkeit. Als ganz neu bezeichnete Telefunken z.B. ein Tastgerät für Verkehrsempfänger und einen 80-W-Funkfeuersender "SSt 301 Lw 0,07/1" für Funkfeuer auf Schiffen oder Landstationen zur Navigation von Schiffen (Betriebsarten: A 1, unmodulierte Telegrafie, und A 2, tonmodulierte Telegrafie; Festfrequenzen = 285 ... 315 kHz ± 1 · 10-4; Anodenmodulation; Modulationsfrequenz in elf Stufen von 354 ... 1052 Hz einstellbar). Aus dem umfangreichen Lorenz-Programm, das auch vieles für die Flug-Funkortung enthält, sei noch auf das für Seenotrufe wichtige Autoalarmgerät "Lo 572a, Cerberus" hingewiesen.

Bei Siemens & Halske konnten wir auf Anhieb aus einem gerade fertiggestellten Volkswagen-Omnibus über die eingebaute 20-W-UKW-Funkfernsprechanlage das öffentliche Stadtnetz wählen. Im Bereich zwischen 156 und 174 MHz stehen sechs verschiedene Betriebs- bzw. Ausweichfrequenzen zur Verfügung. Selektivruf, Signallampen usw. erleichtern den Betriebsdienst.

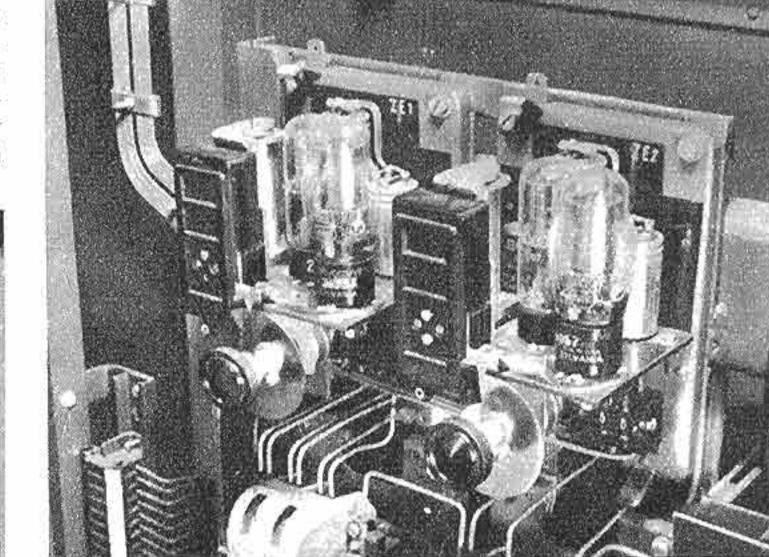
Auf einer Industrie-Ausstellung darf die Elektronik keinesfalls fehlen. Nun, Körting fand beispielsweise mit den HF-Schweißpressen "fixus" (120, 300, 600 und 2000 W) starke Beachtung; das



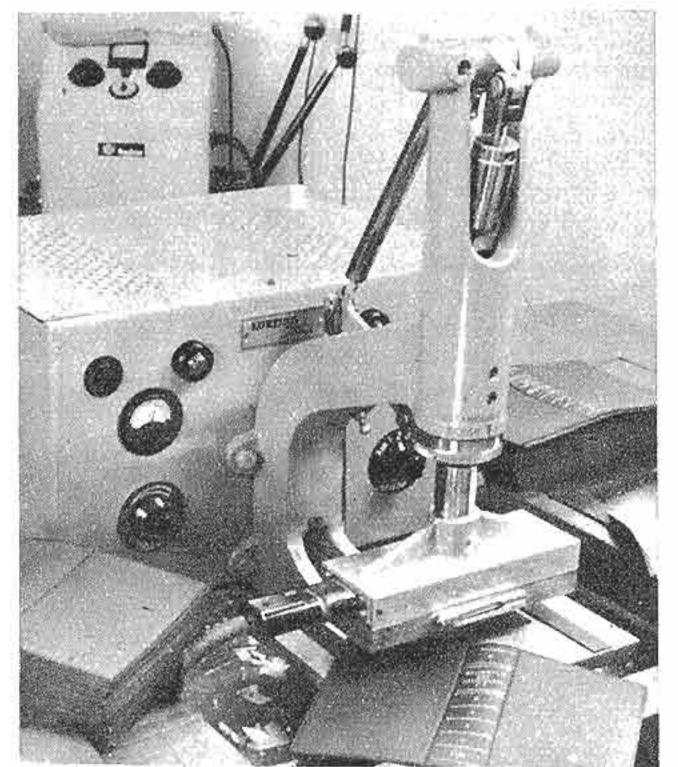
Germanium-Dioden (oben) und Subminiaturröhren

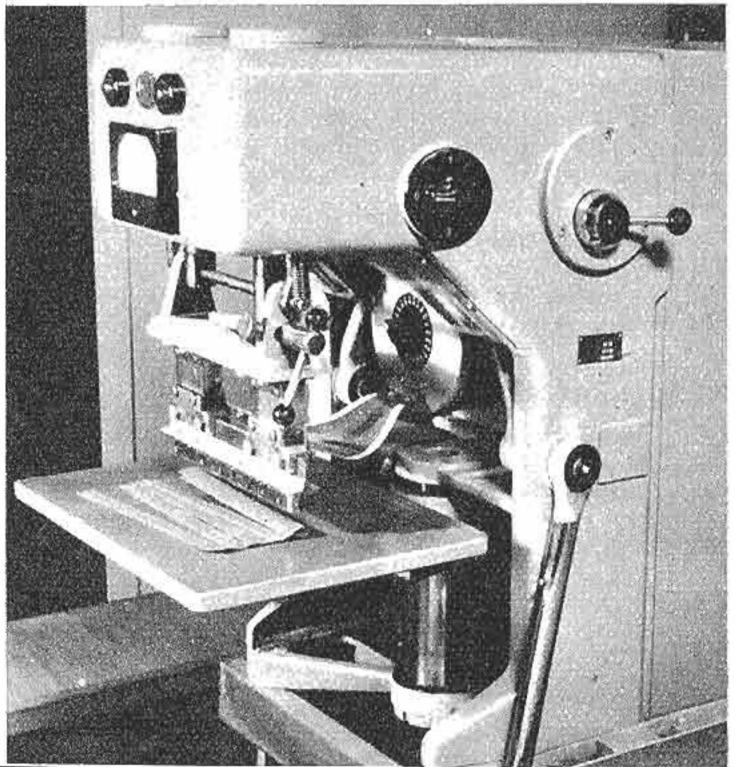

Buchbindern, Prägen von Schriften usw. machte den Besuchern viel Freude. In ähnlicher Art interessierten bei Lorenz HF-Generatoren und die neuen "Celoquick"-Schweißpressen. Auch Telefunken wartete mit vielseitig verwendbaren HF-Generatoren auf. BBC zeigte in Halle I Ost induktive HF-Anlagen für Härtung, Schweißung, Lötung, und auch das elektronische Lichtstärke-Reguliergerät "Thyralux", das vor allem für Kinos. Theater usw. Bedeutung hat.

Wenn auch der "Radar-Grill" von Blaupunkt Elektronik für die Mietwohnungsküche noch zu teuer sein dürfte, werden Gaststätten aber wohl gern in Sekundenschnelle Schnitzel und andere Speisen "hochfrequenztechnisch" grillen.


Ein elektronisches Zeitrelais (Aufladung eines Kondensators, der ein Stromtor zündet) stellten Voigt & Haetiner aus (Einstellbereiche = 0.05 ... 3,5; 0,2 ... 14 s; 0,4 ... 28 s). Die Bezeichnung "elektronisch" enthält noch der elektronische Kompensationsschreiber von Hartmann & Braun zur Registrierung kleiner Gleichspannungen

Links: sehr kleines Kondensatormikrofon (Telefunken). Rechts: neue hochwertige Stecker von Roka

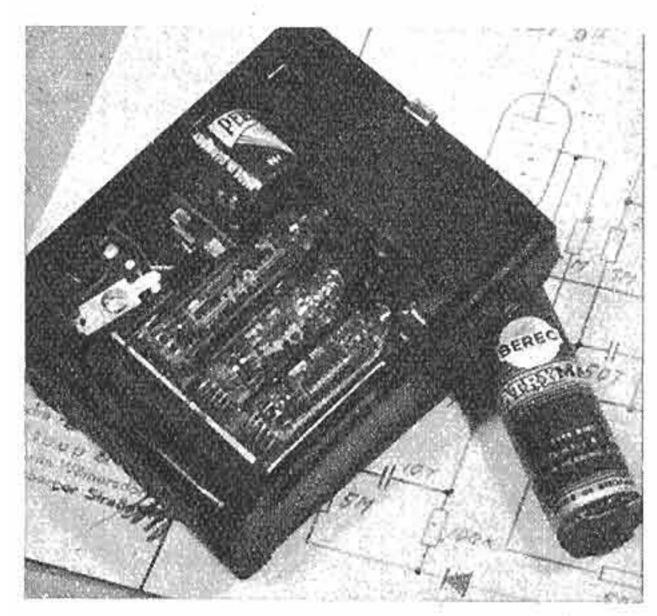

Bedienungsteil der 20-W-UKW-Funkfernsprechanlage von \$ & H im Volkswagenomnibus



Elektronisches Zeitrelais (Voigt & Haeffner)

HF-Schweißpresse "Celoquick" (Lorenz)

Links außen: Körting "fixus", eine HF-Schweißmaschine für die Bearbeitung von Plastikfolien


Der "Radar-Grill" von Blaupunkt Elektronik

Gleichströme (Umwandlung der Fehler-Gleichspannung eines Kompensators in eine Wechselspannung, die in einem dreistufigen Verstärker verstärkt wird usw.). Von den vielen guten Meßinstrumenten dieser Firma sei noch auf ein neues Hochohmvielfachinstrument "Multavi OH" mit 33 330 Ohm/V aufmerksam gemacht.

Unter Einzelteilen und Geräten, die kleinste Abmessungen anstreben, verdienen die Telelunken-Subminiaturröhren DF 650 und DL 650 sowie das neue Hörgerät "Akustik-Sigma" (Abmessungen 70×55×20 mm) der Deutschen Akustik-Ges., Berlin, mit einer Empfindlichkeit von 1 mV bei 1000 Hz und einer maximalen Ausgangsleistung von etwa 2 mW Beachtung; Lautstärkeregelung, Klangfarbenschalter, automatische, abschaltbare Amplitudenbegrenzung usw. sind weitere Vorzüge. Ein induktiver Telefonadapter des gleichen Herstellers für Hörhilfen kommt manchem Wunsche nach.

Kopfhörer in leicht abwaschbarer Krankenhausausführung und Hörkissen sind eine Spezialität von H. Strumpf, Berlin, der auf seinem Stand u. a. auch ein nettes magnetisches Spielzeug vorführte. An Einzelteilen zeigten insbesondere die Berliner Kondensatorenhersteller erfreuliche Weiterent-

Kondensatorenhersteller erfreuliche Weiterentwicklungen. Baugatz liefert alle Arten von Kondensatoren einschl. Rundfunk-Entstörkondensatoren. Elektronenblitz-Elkos bis 500 V, 300 µF

"Akustik-Sigma", ein kleines Hörgerät" der deutschen Akustik-Gesellschaft

usw.; die großen Kunststoffolien-Kondensatoren zur Blindstromkompensation in HF-Erwärmungsanlagen sind für Nennspannungen bis 500 V und für Frequenzen bis 10 kHz ausgelegt. Das Hydrawerk, dessen umfangreiches Kondensatorenprogramm dem neuesten Stand der Technik entspricht, berücksichtigt mit neuen Breitbandentstörern die jüngste Entwicklung und fertigt u. a. Elektrolytkondensatoren bis 600 V- sowie u. a. Motorkondensatoren verringerter Abmessungen. Die

bekannten Glimmerkondensatoren von R. Jahre gibt es vom kleinsten 5-pF-Kondensator bis zum großen Senderkondensator von 1000 kVA; auch Drehkondensatoren für Sender gehören zum Herstellungsprogramm. Das zuverlässige, schnell und sicher auswechselbare C-Normal ist noch unerreicht.

Große Leistungsfähigkeit in der Herstellung von formschönen Spezialkoffern für Rundfunkgeräte, Fonokoffer, Meßinstrumente, Elektronenblitze usw. sah man auf dem Stand von K. Hatzenberger, Berlin. Antennen werden an anderer Stelle dieses Heftes besprochen, deshalb hier nur der Hinweis, daß z. B. Roka auf der Ausstellung noch Weiter-

entwicklungen von Antennenbefestigungswinkern, von hochwertigen Steckern u. a. zeigen konnte. A. Klein, Fabrik für Metallverarbeitung, Berlin, schuf neue Bauelemente für die Übertragung der Energieleitung vom Sendehaus zum Sendeturm. Rund 1200 Firmen hatten ausgestellt. Vom Ackerschlepper bis zur Zweckleuchte fand alles seinen Interessenten. Auch in den ausländischen Pavillons gab es Sehenswertes. So zeigte England beispielsweise das Modell eines Atommeilers, eine Richtverbindungsrelaisstelle usw. Aus Platzgründen mußten wir diesmal den Berichtsrahmen eng halten. Sonderbeiträge in den laufenden Heften sollen manches noch zusammenfassend ergänzen. Jä.

KURZNACHRICHTEN

Erfolgreiche Tagung der Fernseh-Technischen Gesellschaft

Einen überzeugenden Einblick in den hohen technischen Stand des deutschen Fernsehens gewährten die auf der ersten Tagung der Fernseh-Technischen Gesellschaft (FTG) gehaltenen Vorträge führender deutscher Fernsehtechniker aus Kreisen der Bundespost, Industrie, Rundfunkanstalten und der Wissenschaft. Zu dieser repräsentativen Veranstaltung, die vom 1. bis 3. Oktober in Bad Königstein stattfand, waren zahlreiche Gäste auch aus Holland arschienen. Die technisch-wissenschaftlichen Fachvorträge befaßten sich mit Teilgebieten der Sende-, Empfangs- und Studiotechnik einschließlich optischer und filmtechnischer Probleme.

Einen stimmungsvollen Ausklang bildete der Abschlußabend, an dem der erste Vorsitzende der FTG, Herr Dr. Möller, dem anwesenden Herrn Bundespostminister Dr. Schuberth sowie Herrn Generaldirektor Dr. Grimme die Ehrenmitgliedschaft der FTG verlieh und den deutschen Fernsehpionier, Herrn Prof. Dr. Schröter, Madrid, zum Ehrensenior der FTG ernannte. Besichtigungen der fernsehtechnischen Anlagen auf dem Feldberg sowie des FTZ und der Fernseh-GmbH in Darmstadt rundeten das vielseitige Veranstaltungsprogramm ab, das für alle Beteiligten ein voller Erfolg war.

Neuer Fernsehübertragungswagen

Die Konstrukteure und Techniker der Fernseh-GmbH lieferten für das NWDR-Fernsehen einen neuen Fernsehübertragungswagen. Das Fahrzeug. ein 5-Tonner-Büssing-Unterflur-Omnibus, ist mit drei Image-Orthicon-Kameras ausgerüstet. Im Vergleich zu den üblichen Reportagewagen mit zwei Kameras hat das neue "fahrbare Studio" zusätzlich einen Filmgeber, der später durch einen Diageber ergänzt werden kann. Charakteristisch ist ein besonders großes Regiepult mit Mischvorrichtungen für Bild und Ton. Es können Sendungen durchgeführt werden, die den üblichen Rahmen einer aktuellen Reportage weit überschreiten. Dieses fahrbare Studio wird in Zukunft bei allen besonderen Anlässen eingesetzt werden. Es kann ein vollständiges Fernsehprogramm an jedem Ort bestreiten.

Ergebnis der "Sozialen Radiohilfe in Bayern"

Der Aufruf des Bayerischen Rundfunks zur Beteiligung an der "Sozialen Radiohilfe" im Sommer dieses Jahres fand in ganz Bayern lebhaftes Echo. Die Überprüfung der eingegangenen Gebrauchtempfänger ergab die stattliche Zahl von etwa 3500 Geräten, die sofort oder nach Durchführung geringfügiger Reparaturen voll betriebsfähig sind. Man nimmt an, daß sich diese Zahl noch erhöhen wird.

Die Verteilung an bedürftige Personen erfolgt im Einvernehmen mit der Arbeitsgemeinschaft der Wohlfahrtsverbände nach Dringlichkeitsstufen. Blinde sowie Kriegs- und Zivilschwerbeschädigte stehen an erster Stelle.

Interphone-Tondienst

Auf der Düsseldorfer Funkausstellung trat der Interphone-Tondienst nun auch in Deutschland an die Offentlichkeit. Es handelt sich hierbei um eine internationale Einrichtung, die den Tonbandbrief auch der Allgemeinheit zugänglich macht. Es

ist geplant, daß Musikgeschäfte, Hotels, Kaufhäuser usw. und vor allem Radiohändler, die sich mit dem Vertrieh von Tonbandgeräten befassen, Aufnahmezellen einrichten, in denen jedermann einen Tonbrief besprechen kann. Aus Gründen der Wirtschaftlichkeit ist für den vorgesehenen internationalen Austausch eine Bandgeschwindigkeit von 9,5 cm/s Doppelspur als Norm vorgesehen wobei beispielsweise für 2½ Minuten Sprechzeit eine Gebühr von DM 2,50 erhoben wird. Dem-

Läßt sich der Fernseh-Service einfacher gestalten?

Es ist schon sehr viel darüber gesprochen und geschrieben worden, wie sehr das Fernsehen von dem Fernseh-Service abhängig ist. Ohne Zweifel steht und fällt das Fernsehen mit diesem. Der Fernseh-Service ist also eine Notwendigkeit.

Auf der Düsseldorfer Rundfunk-, Phono- und Fernseh-Ausstellung wurde in vielen Gesprächen erörtert, wie die Frage des Fernseh-Service zweckmäßig gelöst werden solle. Immer wieder tauchte die Frage auf: "Welche Meßgeräte sollen wir kaufen? — Werden wir damit auch die Geräte dieser und jener Firma überprüfen und instand halten können? — Werden die Fernseh-Service-Unterlagen auf die verwendeten Meßmittel genügend Rücksicht nehmen?"

Beim Fernseh-Service begegnen sich zwei Industrie-Gruppen: die Gruppe der Hersteller von Fernseh-Geräten und die Gruppe der Hersteller von Meßgeräten. Wenn es gelänge, eine Einigung zu erreichen in der Wahl der Meßpunkte, der Meßmethode und der Ankopplungsweise, so würde dieses allen gemeinsam dienen. Die deut schen Fernsehgeräte stimmen zur Zeit in ihrem prinzipiellen Schaltungsaufbau so weit überein, daß m. E. eine Einigung möglich sein müßte.

Eine Einigung hätte zur Folge, daß die Hersteller von Servicegeräten nur eine kleine Anzahl von Tastköpfen mit festgelegten Eingangsdaten zu entwickeln brauchten. Diese Köpfe könnten im übrigen nach der Kabelseite hin den unterschiedlichen Meßgerätetypen angepaßt sein. Weiterhin würde die Einführung einer Meßnorm die Möglichkeit bringen, die Service-Unterlagen auf bestimmte Meßmethoden und Meßköpfe beziehen zu können. Jeder Fachmann weiß, wie wichtig dies ist, sofern Hochfrequenzmessungen in dem für das Fernsehen üblichen Bereich mit hinreichender Genauigkeit ausgeführt werden sollen.

Wer sich mit der Ausübung des Fernseh-Service befassen möchte, könnte dann auch mit der einmal angeschafften Anlage alle Fernsehgeräte des deutschen Marktes instand halten, sofern die Meßanlage nur auf die Meßnorm Rücksicht nimmt.

Mir scheint, der Gedanke der Meßnormung würde für alle Beteiligten nutzbringend sein. Sollte man ihn nicht verwirklichen?

Dipl.-Ing. J.-H. Helmbold

gegenüber ist das Abhören der Tonbriefe, die auf einem bruchfesten Einheitsbobby versandt werden, in den am Tondienst beteiligten Geschäften kostenlos. Hiermit entsteht also eine Einrichtung, wie sie beispielsweise in der Fleurop schon lange bekannt ist. Besonders reizvoll erscheint die Tatsache, daß ein Tonbandbrief bis zu 30 Minuten Dauer in ganz Europa für DM 0,25 per Luftpost zollfrei verschickt werden kann.

für einen breiten Die Dimensionierung von Meßwandlern Frequenzbereich

(Schluß aus FUNK-TECHNIK, Bd. 8 [1953], H. 18, S. 589)

Die Berechnung

Hierbei wird naturgemäß von dem Stromund Spannungsbedarf I_s bzw. U_s des anzuschließenden Wechselstrom-Meßwerks Gleichrichter Thermokreuz, (einschl. o. dgl.) sowie dem gewünschten Stromverhältnis ü; und dem zugelassenen Maximalfehler F_{max} des Wandlers ausgegangen. Der zu wählende Eisenkern bzw. seine Größe ist zunächst einmal von der Leistung abhängig, die der Wandler übertragen muß. Diese ist in den meisten Fällen sehr klein. Ein Thermokreuz z. B. benötigt je nach Stromstärke Leistungen zwischen 10⁻³ und 1 W, ein Meßwerk mit Trockengleichrichter z. T. noch weniger. Man müßte daher im allgemeinen mit den kleinsten Kernschnitten auskommen.

Einen Anhalt für den zu wählenden Kernschnitt erhält man aus der nachstehenden Gleichung, die unter der Annahme eines Eisenfüllfaktors von 0,9, eines Kupferfüllfaktors von 0,5 und einer Stromdichte von 0,5 A/mm² aufgestellt ist:

$$N = 0.5 \cdot 10^{-6} \cdot f_{\rm u} \cdot F_{\rm e} \cdot q_{\rm e} \cdot \mathfrak{B} \tag{8}$$

Hierbei ist f_{ij} die untere Grenzfrequenz in Hz, B die zugehörige Induktion in G, $F_{\rm e}$ der Fensterquerschnitt und $q_{\rm e}$ der Eisenquerschnitt in cm²; die Leistung er-

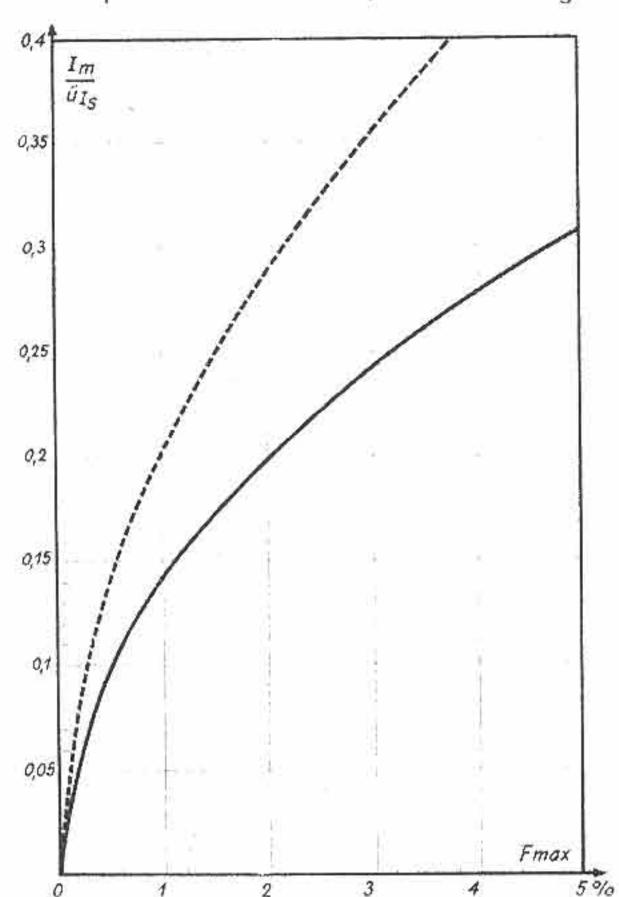


Abb. 6. Das Verhältnis des Magnetisierungsstroms zum reduzierten Sekundärstrom bei 50 Hz (ausgezogen) und bei der unteren Grenzfrequenz (gestrichelt) in Abhängigkeit vom zugelassenen prozentualen Maximaliehler des Wandlers

gibt sich in W. Da bei Beginn eines Entwurfs diese Werte noch nicht alle festliegen, wählt man am besten einen geeignet erscheinenden Blechschnitt und kontrolliert durch Einsetzen passend erscheinender Werte von \mathfrak{B} und f_{u} .

Wie sich zeigen wird, erhält der Wandler um so höhere Windungszahlen, je kleiner die zugelassenen Fehler sind. Ein Mittel, um diese herabzusetzen, ist die Wahl eines größeren Blechschnitts. Außerdem können hierbei größere Drahtstärken untergebracht werden, so daß die Kupferverluste vernachlässigbar klein werden. Ferner ist es vorteilhaft, ein Kernmate-

rial mit möglichst hoher Permeabilität zu verwenden, da auch diese Maßnahme kleine Windungszahlen ergibt. Auch die Streuinduktivität des Wandlers wird dabei kleiner und man erreicht auf diese Weise eine höhere obere Grenzfrequenz, wie noch gezeigt wird. Dieser Gesichtspunkt kommt praktisch aber nur bei Wandlern in Betracht, die für ein Meßwerk mit Trockengleichrichter bestimmt sind, denn hier treten in erster Linie verhältnismäßig hohe Kapazitäten auf der Sekundärseite des Wandlers auf.

Das Windungsverhältnis $\ddot{u} = \frac{w_s}{w_p}$ soll nun

so gewählt werden, daß bei einer geeigneten Frequenz (am besten bei f = 50 Hz) der Fehler F des Stromverhältnisses ü; gleich Null wird, d. h., daß bei dieser Frequenz die geometrische Summe von $I_{\rm m}$ und $I_{\rm s}\cdot\ddot{u}$ gleich $I_{\rm p}$, d. h. gleich $l_{\rm s} \cdot \ddot{u}_{\rm i}$ wird:

$$\ddot{u}_{i}^{2} I_{s}^{2} = I_{s}^{2} \ddot{u}^{2} + I_{m}^{2}$$
oder
$$\ddot{u}^{2} = \ddot{u}_{i}^{2} - \frac{I_{m}^{2}}{I^{2}}$$
(9)

Bei einer sehr hohen Frequenz, z. B. f = 10 kHz, nimmt der Fehler F seinen Maximalwert F_{\max} an und der Magnetisierungsstrom I_{\min} wird vernachlässigbar klein (der Primärstrom $I_{\rm p}$ wird gleich dem reduzierten Sekundärstrom $I_{\rm p}$ wird gleich $U_{\rm p} = \frac{U_{\rm s}}{\ddot{u}} = \frac{0.8}{4.9} = 0.163 \,\rm V$ daß man erhält

$$0.01 \ F_{\text{max}} = \frac{\ddot{u}_{i} \cdot I_{s}}{I_{p}} - 1; \ \frac{\ddot{u}_{i} \ I_{s}}{\ddot{u} \ I_{s}} = 1 + 0.01 \ F_{\text{max}}$$

$$\ddot{u} = \frac{\ddot{u}_{i}}{1 + 0.01 \ F_{\text{max}}}$$
(10)

Aus den so gewonnenen Gleichungen (9) und (10) ergibt sich schließlich der Magnetisierungsstrom $I_{\rm m}$ bei 50 Hz zu

$$I_{\rm m} = \ddot{u}_{\rm i} I_{\rm s} \sqrt{1 - \frac{1}{(1 + 0.01 \, F_{\rm max})^2}}$$
 (11)

Diese Gleichung muß wegen der Differenzbildung ziemlich genau ausgerechnet werden, was nicht sehr bequem ist. Daher ist in Abb. 6 eine Kurve angegeben, die diese Rechnung erspart und das Verhältnis des Magnetisierungsstroms bei 50 Hz zum reduzierten Sekundärstrom als Funktion des Maximalfehlers F_{max} zeigt.

Die hauptsächlich benötigten Werte können auch der nebenstehenden Tabelle entnommen werden:

Hat man so den Magnetisierungsstrom Die untere Grenzfrequenz bestimmt, so kann daraus die Primärwindungszahl und weiter aus Gl. (10) der Wert von ü sowie die Sekundärwindungszahl errechnet werden. Hat das Kernmaterial eine in dem in Frage kommenden Feldstärken- oder Induktionsbereich konstante Permeabilität μ , wie dies gemäß Abb. 3 bei Mü-Metall bis zu 100 G der Fall ist, so ergibt sich die Primärwindungszahl aus

$$w_{p} = \sqrt{\frac{U_{p} \cdot 10^{8} \cdot l_{e}}{4,44 \cdot q_{e} \cdot f \cdot \mu \cdot l_{m} \cdot 0,4 \pi \sqrt{2}}}$$

wobei jedoch eine Induktionskontrolle

gemäß Gl. (2) zweckmäßig ist, um Sicherheit über die Konstanz von μ zu bekommen.

Ist die Permeabilität nicht konstant, so muß mit einigen angenommenen Windungszahlen S und B nach den bekannten Gleichungen ermittelt und als Linienzug in die Magnetisierungskurve des betreffenden Materials eingetragen werden. Der Schnittpunkt mit der Magnetisierungskurve ergibt den 5- oder B-Wert, aus dem dann w_p ermittelt werden kann.

Beispiel: Der Wandler des Beispiels aus FUNK-TECHNIK, Bd. 8 [1953], H. 18, S. 589 soll für einen Maximalfehler von $F_{\text{max}} = \pm 2^{0/0}$ umgewickelt werden.

Aus Abb. 6 oder der vorstehenden Tabelle

entnimmt man
$$\frac{I_{\rm m}}{\ddot{u}_{\rm i} I_{\rm s}} = 0.197$$
. Dann wird

$$I_{\rm m} = \ddot{u}_{\rm i} \cdot I_{\rm s} \left(\frac{I_{\rm m}}{\ddot{u}_{\rm i} \cdot I_{\rm s}} \right) = 10 \cdot 5.0 \cdot 0.197 = 9.85 \,\mathrm{mA}$$

(9)
$$\mathfrak{H} = \frac{0.4 \,\pi \,\sqrt{2 \cdot l_{\rm m} \cdot w_{\rm p}}}{l_{\rm e}} = \frac{1.775 \cdot 9.85 \cdot 10^{-3}}{7.0} \cdot w_{\rm p}$$
$$= 2.50 \,w_{\rm p} \,\,[\text{mOe}]$$

$$\ddot{u} = \frac{\ddot{u}_i}{1 + 0.01 \, F_{\text{max}}} = \frac{5.0}{1 + 0.02} = 4.90$$

$$U_{\rm p} = \frac{U_{\rm s}}{\ddot{u}} = \frac{0.8}{4.9} = 0.163 \,\rm V$$

$$0.01 F_{\text{max}} = \frac{\ddot{u}_{i} \cdot I_{8}}{I_{p}} - 1; \quad \frac{\ddot{u}_{i} I_{8}}{\ddot{u} I_{8}} = 1 + 0.01 F_{\text{max}}$$

$$\ddot{u} = \frac{\ddot{u}_{i}}{1 + 0.01 F} \qquad (10)$$

$$\mathcal{B} = \frac{U_{p} \cdot 10^{8}}{4.44 \cdot q_{e} \cdot f \cdot w_{p}} = \frac{0.163 \cdot 10^{8}}{4.44 \cdot 0.42 \cdot 50 \cdot w_{p}} = \frac{0.163 \cdot 10^{8}}{4.44 \cdot 0.42 \cdot 50 \cdot w_{p}} = \frac{175}{w_{p}} \text{ [kGauß]}$$

wp	100	110	120	130	140	Wdg
S	0,250	0,275	0,300	0,325	0,350	Oe
Ÿ	1750	1590	1460	1345	1250	Gauß

Die mit diesen Werten gezeichnete Kurve a ist in Abb. 7 eingetragen und schneidet die Magnetisierungskurve b für Trafoblech IV bei $\mathfrak{B} = 1450$ G bzw. $\mathfrak{H} = 1450$ G 301 mOe. Damit wird

$$w_p = \frac{\mathfrak{H}}{2.50} = \frac{301}{2.50} = 121 \text{ Wdg}.$$

und $w_8 = \ddot{u} \cdot w_p = 4.90 \cdot 121 = 593$ Wdg.

$$F_{\text{max}} = 0.5$$
 1.0 1.5 2.0 2.5 3.0 4.0 5.0% $\frac{I_{\text{m}}}{\ddot{u}_{\text{i}} I_{\text{s}}} = 0.0995 \ 0.1404 \ 0.1715 \ 0.197 \ 0.220 \ 0.240 \ 0.275 \ 0.305$

Bei der unteren Grenzfrequenz fu soll sich der Fehler — F_{max} $^{0}/_{0}$ ergeben. Bei der oberen Frequenzgrenze ist der Primärstrom um einen bestimmten Betrag kleiner als bei 50 Hz; um den gleichen Betrag muß er offenbar an der unteren Frequenzgrenze größer sein. Man erhält $I_{\rm p} = (1 + 0.01 F_{\rm max}) \cdot \ddot{u}_{\rm i} \cdot I_{\rm s}$ $= (1 + 0.01 F_{\text{max}})^{2} \cdot \ddot{u} \cdot I_{s}$

Auch bei I_u ergibt sich I_p als geometrische Summe des reduzierten Sekundärstroms $\ddot{u} \cdot l_s$ und des Magnetisierungsstroms $l_{\rm m}$ so daß

$$I_{\rm m}^2 = I_{\rm p}^2 - \ddot{u}^2 I_{\rm s}^2 = \ddot{u}^2 I_{\rm s}^2 (1 + 0.01 F_{\rm max})^4 - 1$$

oder
$$\frac{l_{\rm m}}{\ddot{u} \, l_{\rm s}} = (1 + 0.01 \, F_{\rm max})^4 - 1$$
 (13)

Zur bequemen Auswertung ist diese Funktion ebenfalls in Abb. 6, und zwar gestrichelt, eingetragen. Die wichtigsten Werte dieser Funktion sind

F	0,5	1	2	3	4	5%
$l_{\mathbf{m}}$	0.1421	0.2017	0.2071	0.2540	0.4101	0.4000
ü ls	0,1421	0,2017	0,2871	0,3543	0,4121	0,4637

Mit dem so ermittelten Magnetisierungsstrom $I_{\rm m}$ bestimmt man in bekannter Weise die bei $t_{\rm u}$ geltende Feldstärke \mathfrak{H} , entnimmt der Magnetisierungskurve die zugehörige Induktion \mathfrak{B} und erhält schließlich die untere Grenzfrequenz aus

$$f_{\rm u} = \frac{U_{\rm p} \cdot 10^8}{4,44 \cdot q_{\rm e} \cdot \mathfrak{B} \cdot w_{\rm p}} \tag{14}$$

Der Einfluß der Sekundärkapazität

Eine Kapazität an den Sekundärklemmen des Wandlers, die z. B. aus der Eigenkapazität der Wicklung oder des angeschlossenen Meßwerks bestehen kann, wird sich in erster Linie bei hohen Frequenzen auswirken. Sie stellt einen frequenzabhängigen Nebenschluß für das Meßwerk dar, verkleinert also den angezeigten Strom. Um Vollausschlag zu erhalten, muß $I_{\rm p}$ entsprechend erhöht werden. Damit wird der Fehler des Wandlers kleiner, um schließlich negative Werte anzunehmen. Die Fehlerkurve muß daher zu hohen Frequenzen hin wieder absinken.

Der kapazitive Blindstrom der Kapazität transformiert sich auf die Primärseite und kompensiert dort je nach seiner Größe mehr oder minder den vorhandenen Magnetisierungsstrom. Der zum Ermitteln des Fehlerverlaufs nötige Rechnungsgang entspricht daher im wesentlichen dem im Heft 18 angegebenen Beispiel. Lediglich an Stelle des Magnetisierungsstroms $I_{\rm m}$ muß die Differenz $I_{\rm m}-I_{\rm e}'$ gesetzt werden, wobei $I_{\rm e}'$ der auf die Primärseite transformierte kapazitive Strom $\ddot{u}I_{\rm e}$ ist.

$$I'_{\rm e} = \ddot{u} I_{\rm e} = U_{\rm s} \cdot 2 \pi \cdot f \cdot C \cdot \ddot{u}$$

so daß $I_{\rm p}^2 = (I_{\rm m} - I'_{\rm e})^2 + \ddot{u}^2 I_{\rm s}^2$ (15)

Die weitere Ermittlung der Fehlerkurve verläuft dann in der gleichen Weise wie oben.

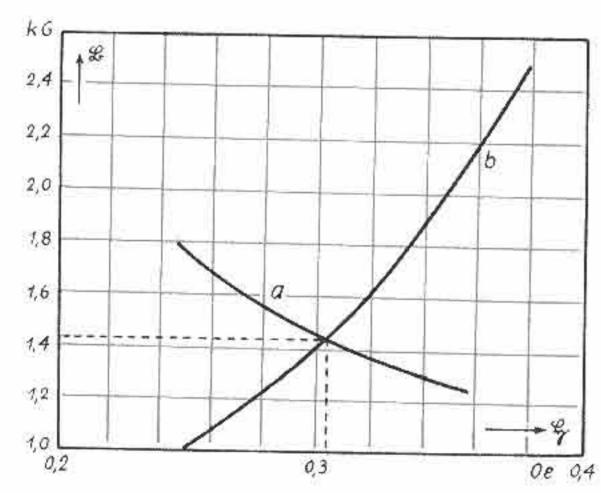


Abb. 7. Zur zeichnerischen Ermittlung der Windungszahl für einen Wandler mit $\pm\,2\,\%$ Fehler

Beispiel: Wird der Wandler des Beispiels aus Heft 18 sekundär mit C = 50 nF zusätzlich belastet, dann wird

$$I'_c = \ddot{u} \cdot U_s \cdot 2 \pi f \cdot C = 4.8 \cdot 0.8 \cdot 2 \pi \cdot 5 \cdot 10^{-8} f$$

= 1.21 \cdot 10^{-3} f [mA]

Es genügt in diesem Fall, einige hohe Frequenzen nachzurechnen, da C sich bei tiefen Frequenzen praktisch nicht auswirkt.

f	1000	3000	10 000 Hz
<i>I</i> ′ _c	1,31	3,63	12,1 mA
$I_{\mathbf{m}}$	2,56	1,20	0,5 mA
$(I_{\rm m}-I_{\rm c}')$	1,35	- 2,43	11,6 mA
$(I_{\rm m}-I_{\rm e}')^2$	0,018	0,059	1,348 · 10-4
$\ddot{u}^2 I_6^2$	23,04	23,04	23,04 · 10-4
$I_{\mathbf{p}}^{2}$	23,06	23,10	24,39 - 10-4
$I_{\mathbf{p}}$	48,1	48,1	49,4 mA
$\ddot{a}_i \frac{I_s}{I_p}$	1,038	1,038	1,011
F	+ 3,8	+ 3,8	+1,1 %

Dieser Verlauf der Fehlerkurve bei hohen Frequenzen ist in Abb. 5 gestrichelt eingetragen. Daraus ergibt sich, daß auch eine obere Frequenzgrenze besteht, denn wenn der Wandler nicht mit einer Kapazität belastet wird, so haben seine Wicklungen doch stets eine Eigenkapazität. Allerdings wird diese im allgemeinen wesentlich niedriger liegen als im oben gewählten Beispiel. Die obere Grenzfrequenz wäre jedenfalls dort anzusetzen, wo die absinkende Fehlerkurve — $F_{\rm max}$ wieder erreicht.

Die obere Grenzfrequenz

Ihre Berechnung kann auf die Art geschehen, daß man wie im vorstehenden Beispiel noch weitere Frequenzen i in das Rechenschema einfügt, die Kurve zeichnet

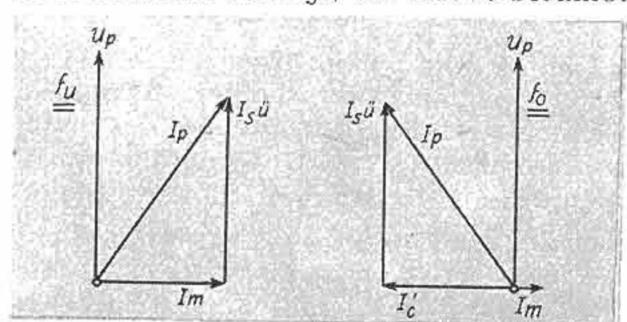


Abb. 8. Die Vektordiagramme des Wandlers an der unteren und der oberen Frequenzgrenze

und aus ihr die gesuchte obere Grenzfrequenz i_0 entnimmt. Da bei hohen Frequenzen aber der Magnetisierungsstrom vernachlässigbar klein wird, führt ein einfacheres Verfahren in den meisten Fällen bequemer zum Ziele.

In Abb. 8 sind zwei Vektordiagramme dargestellt, wovon das linke für die untere Grenzfrequenz i_u gelten soll und keiner weiteren Erläuterung bedarf. Das rechte gilt für die obere Grenzfrequenz I_{o} ; daher sind in beiden die Vektoren I_{p} gleich groß. Damit dies der Fall ist, muß offenbar I_c' — $I_{\rm m}$ bei $I_{\rm o}$ gleich $I_{\rm m}$ bei $I_{\rm n}$ sein. $I_{\rm m}$ ist im rechten Diagramm schon sehr klein dargestellt; in den meisten Fällen wird es maßstäblich noch viel kleiner werden. Vernachlässigt man es, so stimmen die Vektorbilder (abgesehen von ihrer Spiegelbildlichkeit, die hier keine Rolle spielt) dann überein, d. h., die Primärströme und damit die Fehler sind dann gleich groß, wenn

$$I_{c}'(f = f_{o}) = I_{m}(f = f_{n}).$$

Wie groß $I_{\rm m}$ ($I=I_{\rm u}$) werden darf, bis der maximale Fehler erreicht wird, wurde bereits in Gl. (13) festgestellt. Die gleiche Bedingung gilt demnach auch für I_c an der oberen Frequenzgrenze. Man erhält demnach

$$I'_{c} = \ddot{u}I_{s} \left[(1 + 0.01 F_{\text{max}})^{4} - 1 \right]$$

= $U_{s} \cdot 2 \pi I_{o} \cdot C \cdot \ddot{u}$

oder

$$f_{\rm o} = \frac{I_{\rm s} \left[(1 + 0.01 \, F_{\rm max})^4 - 1 \right]}{U_{\rm s} \, 2 \, \pi \, C} \tag{16}$$

Für die Ermittlung des Ausdrucks

 $[(1+0.01\,F_{\rm max})^4-1]$ kann natürlich auch die Abb. 6 herangezogen werden. Für den Fall des letzten Beispiels ergibt sich die obere Grenzfrequenz zu

$$f_0 = \frac{10^{-4} \cdot 0.4121}{0.8 \cdot 2 \,\pi \cdot 5 \cdot 10^{-8}} = 16.4 \,\text{kHz}$$

Dieser Wert ist in Abb. 5 ebenfalls eingetragen. Daß hierbei voraussetzungsgemäß $I_{\rm ini}$ vernachlässigt werden darf, geht schon aus der Rechentabelle des letzten Beispieles hervor; bereits bei i=10 kHz ist dort ein Magnetisierungsstrom $I_{\rm ini}=0.5$ mA festzustellen, gegenüber $I'_{\rm c}=12.1$ mA. Dieses Verhältnis wird bei 16 kHz natürlich noch günstiger.

Der Einfluß der Streuinduktivität

Zwei gebräuchliche Schaltungen für einen auf ein Trockengleichrichter-Meßwerk arbeitenden Meßwandler zeigen die Abb. 9 und 10. Dort ist jeweils links die Schaltung selbst und rechts ein Ersatzschaltbild gezeigt. Das Ersatzschaltbild gilt für den Fall, daß gerade die obere Sekundärklemme des Wandlers positive Polarität aufweist. Dann sind jeweils die gerade in der Sperr-Richtung beanspruchten Gleichrichterzellen durch ihre Eigenkapazitäten C ersetzt; außerdem ist noch die mit der Kombination Meßwerk-Gleichrichter in Reihe liegende Streuinduktivität angedeutet.

Betrachtet man zunächst die Schaltung Abb. 9, so liegt hier offenbar eine Reihenresonanzschaltung aus der Streuinduktivität $L_{\rm st}$, dem Durchlaßwiderstand der beiden parallel liegenden Gleichrichter und der Kapazität der beiden parallel geschalteten Kapazitäten C vor. Gelangt die Frequenz in die Nähe der Resonanz dieses Serienresonanzkreises, so wächst offenbar die an der Parallelschaltung der Gleichrichter und Kapazitäten liegende Spannung erheblich an und dementsprechend auch der Strom durch das Meßwerk. Um Vollausschlag zu erreichen, braucht man entsprechend weniger Primärstrom, und das bedeutet, daß schließlich der Fehler mit wachsender Frequenz wieder positiv wird.

Ähnlich liegen auch die Verhältnisse bei einer Schaltung gemäß Abb. 10. Auch hier

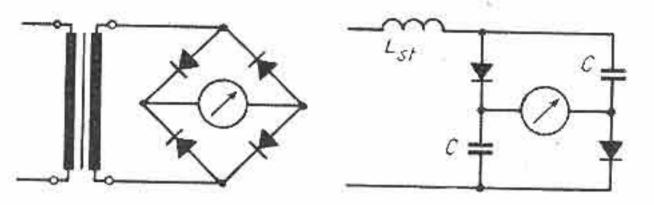


Abb. 9. Schaltschema eines Wandlers mit Trockengleichrichter-Meßwerk in Graetzschaltung (links) und Ersatzschaltbild dieses Meßwandlers (rechts)

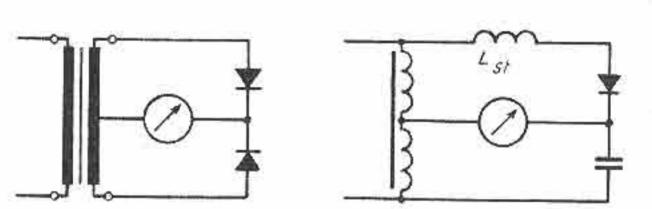


Abb. 10. Schaltschema eines Wandlers mit Trockengleichrichter-Meßwerk in Vollwegschaltung (links) und Ersatzschaltbild des Wandlers (rechts)

liegt eine Reihenresonanzschaltung vor aus $L_{\rm st}$, dem Durchlaßwiderstand der Gleichrichterzelle und der Kapazität C, die bei Annäherung an den Resonanzfall den Spannungsabfall an C und damit den Strom durch das Meßwerk erheblich ansteigen läßt. Der Fehler steigt also auch hier stark ins Positive.

Eine Berechnung dieses Frequenzgangs hätte aber wenig praktischen Wert. Die Streuinduktivität und die Eigenkapazität der Gleichrichterzellen sind gewöhnlich nicht bekannt und auch nicht so sehr einfach meßbar. Hinzu kommt noch, daß die gezeigten Ersatzschaltbilder die vorliegenden Verhältnisse nicht vollkommen erfassen. Beispielsweise ist häufig auch die Eigenkapazität der Sekundärwicklung nicht vernachlässigbar, die weitere Resonanzmöglichkeiten ergibt.

Unter diesen Umständen wird man sich im allgemeinen darauf beschränken, beim Entwurf diese Faktoren nur insoweit zu berücksichtigen, als man eine möglichst kleine Streuinduktivität anstrebt und Gleichrichterzellen mit möglichst kleiner Kapazität wählt, um die Resonanzfrequenz möglichst weit nach oben zu verschieben. Ersteres ist durch die bekannten Wicklungsmaßnahmen, vor allem aber durch Auswahl eines Kernmaterials mit

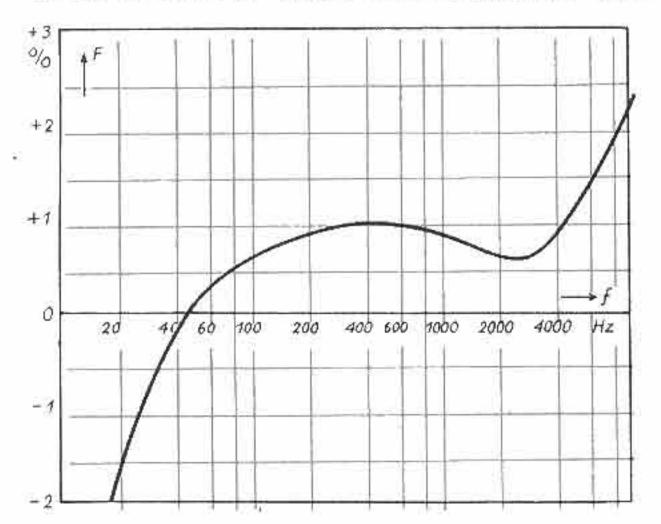


Abb. 11. Fehlerkurve eines Wandlers mit Trockengleichrichter-Meßwerk in Vollwegschaltung mit dem durch die Gleichrichterkapazität bedingten Abfall bei hohen Frequenzen und anschließendem Wiederanstieg durch die Streuinduktivität

hohem μ erreichbar. Für kleine Gleichrichterkapazität sind insbesondere Germaniumdioden ratsam, deren Kapazität
bekanntlich um Größenordnungen kleiner
ist als die der bisher üblichen Selenoder Kupferoxydul-Gleichrichter. Eine in
einem Industrielaboratorium gemessene
Fehlerkurve, die den Anstieg bei hohen
Frequenzen zeigt, ist in Abb. 11 wiedergegeben.

Praktische Hinweise

Für den Entwurf eines solchen Stromwandlers muß also zunächst der Spannungs- und Strombedarf des Gleichrichtermeßwerks bekannt sein. Da die von den Herstellerfirmen veröffentlichten Gleichrichterkennlinien nur Mittelwerte darstellen, um die herum die praktisch gemessenen Werte erheblich streuen, ermittle man diese Werte durch einen praktischen Versuch.

Ahnliches gilt auch für die Magnetisierungskurven der Wandlerkerne. Für den jeweils vorliegenden Kern läßt-sich diese Unsicherheit durch eine Probewicklung beseitigen, mit deren Hilfe man einige Punkte der Funktion $U = f(I_m)$ aufnimmt. Besondere Vorsicht freilich ist bei hochpermeablen Blechen geboten, die bekanntlich mechanisch sehr empfindlich sind. Man vermeide daher grundsätzlich Bleche des M-Schnitts, da sich diese nur durch Verbiegen der Mittelzungen in den Wickelkörper einschachteln lassen, und auch bei U/I- oder E/I-Schnitten achte man darauf, Stoß und Schlag zu vermeiden.

Im Interesse einer kleinen Streuinduktivität sollte man die Primärwicklung bzw. -wicklungen möglichst sorgfältig gleichmäßig auf die Sekundärwicklung verteilen, was insbesondere bei mehreren Primärwicklungen mit höheren Übersetzungsverhältnissen wichtig erscheint. Wegen der kleinen Kapazität sind insbesondere Germaniumdioden mit Vorteil verwendbar.

Elektronische Stabilisierung von Gleich- und Wechselspannungen

Häufig werden zur Stromversorgung von Geräten Gleich- oder Wechselspannungen benötigt, deren Größe von der Belastung oder den Schwankungen der Netzspannung praktisch unabhängig sein soll. In solchen Fällen kann von elektronischen Stabilisierungsschaltungen mit Erfolg Gebrauch gemacht werden. Als Beispiel sind nachfolgend zwei praktisch ausgeführte Schaltungen beschrieben.

Die Abb. 1 zeigt das Schaltbild eines stabilisierten Stromversorgungsgerätes, das z.B. im Labor zum Betrieb von kleinen Sendern, Meßgeräten usw. Verwendung finden kann. Der Netztransformator liefert sekundärseitig 2×450 V für zwei Gleichrichterröhren Valvo DCG 4/1000. Der gleichgerichtete Ausgangsstrom von 325 mA wird durch ein Siebglied Dr, C1 geglättet und fließt durch vier parallel geschaltete Röhren EL 34 und über ein Milliamperemeter zum Verbraucher. Über einen einstellbaren Spannungsteiler R_{12} , R_{13} , R_{14} wird ein Teil der Ausgangsspannung an das Steuergitter der steilen Langlebensdauerpentode Valvo E 83 F geführt, deren Katode ein durch die Brennspannung der Stabilisierungsröhre Valvo 85 A 1 definiertes Potential erhält. Mit den Widerständen R_1 und R_2 wird ein Mindeststrom durch die Stabilisatorröhre sichergestellt. Die Anode der E 83 F ist über die Widerstände R_4 , R_5 , R_6 , R_7 direkt mit den Steuergittern der Regulatorröhren EL 34 verbunden. Der Ausgang ist mit 15 k Ω (R_{15}) vorbelastet; ein Kondensator C2 dient zum Kurzschluß von etwaiger im Verbraucher vorhandener Hochfrequenz.

Der Ausgangsstrom ist 325 mA bis zu einer Ausgangsspannung von 250 V.

Schwankungen der Spannung sind am Meßinstrument bei Änderung der Belastung von Null bis 325 mA praktisch nicht mehr feststellbar. Für höhere Ausgangsspannungen verringert sich die obere Belastungsgrenze (auf 250 mA bei 300 V, auf 200 mA bei 350 V und auf 125 mA bei 400 V), während die Schwankungen der Ausgangsspannung bis zu 2 V, d. h. 0,5 % bei Belastungsänderungen von Null bis Vollast, groß sein können. Bei Netzspannungsschwankungen von ±20 % sind die Änderungen der Ausgangsspannung nicht größer als ±1 %. Der effektive Innenwiderstand des Stromversorgungsteils ist höchstens 10 Ohm. Der Brummanteil der Ausgangsspannung ist ungefähr 50 mV bei einem Laststrom von 100 mA, 80 mV bei 200 mA und 120 mV bei 300 mA. Natürlich ist durch entsprechende Vergrößerung des Siebfilters die Brummspannung noch weiter herabzusetzen. Die Regelung der Ausgangsspannung erfolgt mit dem Potentiometer R_{13} innerhalb eines Bereichs von 150 V bis 400 V.

Es ist ein getrennter Gleichrichterteil zur Erzeugung einer Gittervorspannung vorgesehen, die durch eine Stabilisatorröhre 85 A 1 stabilisiert wird. Ein Schalter S_2 gestattet wahlweise die Entnahme von $0 \dots 15 \text{ V}$ oder $0 \dots 85 \text{ V}$, wobei der Meßbereich des Voltmeters gleichzeitig entsprechend umgeschaltet wird.

Die Prinzipschaltung eines Gerätes, das eine stabilisierte Ausgangswechselspannung liefert, ist in Abb. 2 wiedergegeben. Der Transformator Tr_1 erzeugt eine Wechselspannung, die dem Verbraucher über zwei gleichstromvormagnetisierte Drosseln Dr_1 , Dr_2 zugeführt wird. Die

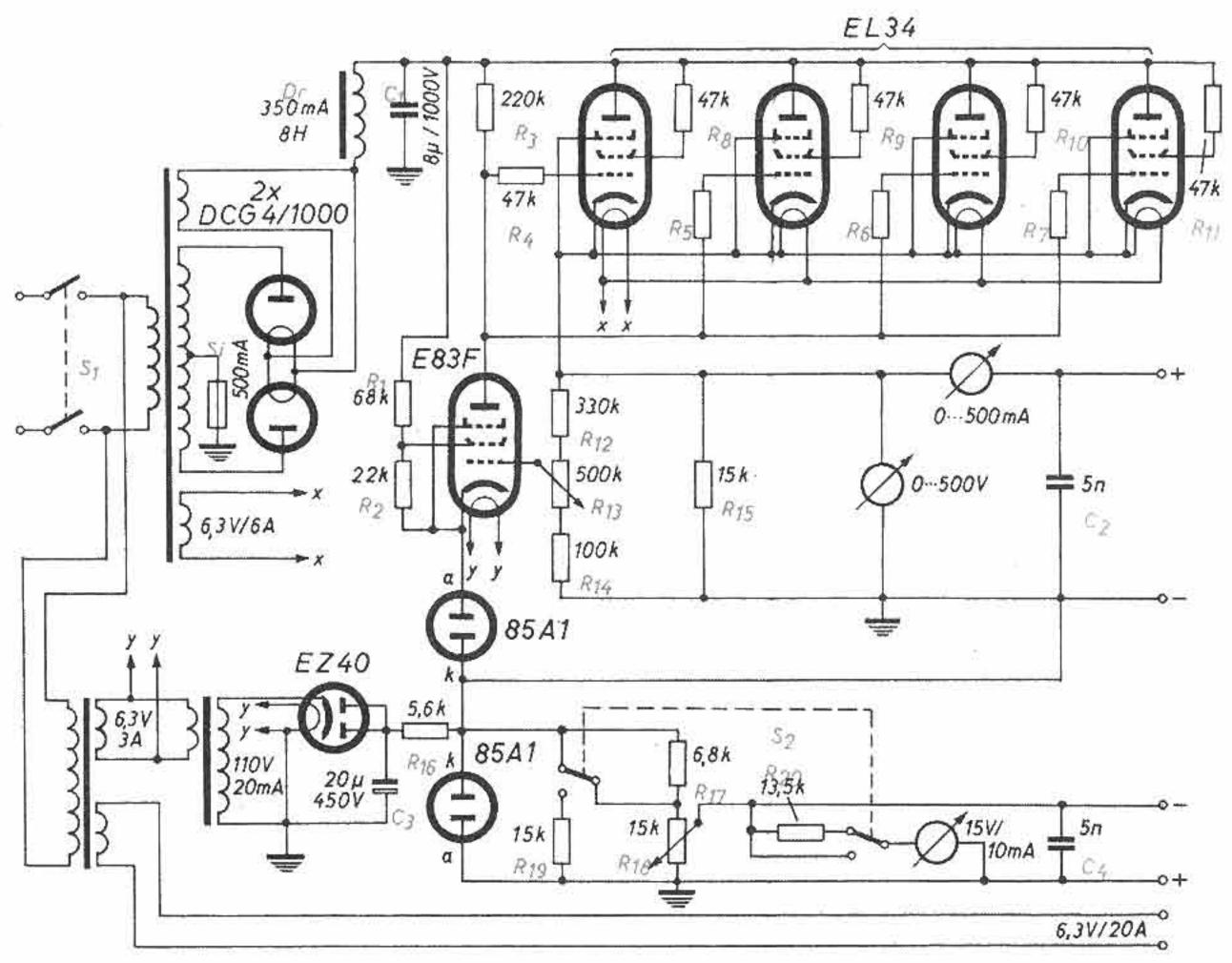


Abb. 1. Schaltbild eines stabilisierten Stromversorgungsgerätes

Ausgangswechselspannung wird durch die Gleichrichterröhre AZ 41 in eine Gleichspannung umgeformt, die der Größe der Ausgangswechselspannung praktisch proportional ist. Anderungen dieser Spannung werden durch die E83F verstärkt. deren Katode ein definiertes Potential von 85 V hat. Dieses Potential wird durch die Stabilisatorröhre 85 A 1 erzeugt. Die E83 F liefert eine variable Vorspannung. für die beiden Röhren E 80 L, die als gesteuerte Gleichrichter arbeiten. Hierdurch wird der Vormagnetisierungsstrom für die Drosseln Dr, Dr, beeinflußt. Angenommen, zu einem bestimmten Zeitpunkt wächst die Ausgangsspannung, so wächst auch die durch die AZ 41 gleichgerichtete Spannung, wodurch der Anodenstrom

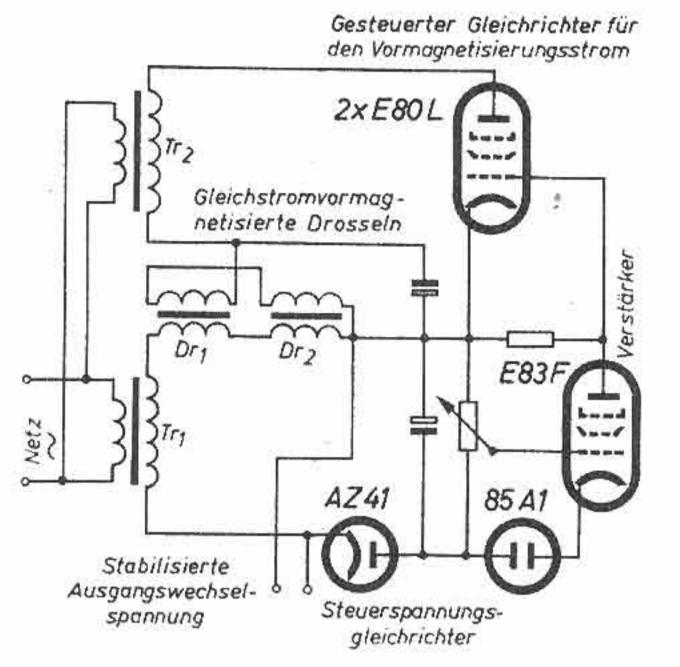


Abb. 2. Prinzipschaltung eines Gerätes mit stabilisierter Ausgangswechselspannung

der E83F zunimmt. Damit wird die Gitterspannung der beiden Röhren E 80 L negativer; der Vormagnetisierungsstrom in den Drosseln nimmt ab und deren Induktivität wächst. Hierdurch wird die Zunahme der Wechselspannung wieder ausgeglichen. Abb. 3 zeigt das vollständige Schaltbild des Gerätes, das für 110 V Ausgangsspannung ausgelegt wurde. Der Transformator Tr_1 hat drei Anzapfungen für 125, 145 und 160 V. Bei Wahl der 125-V-Anzapfung steht eine Ausgangsleistung bis zu 50 W zur Verfügung. Die Ausgangsspannung wird hierbei auf 110 V ±1% gehalten; die Netzspannung darf zwischen 192 und 228 V schwanken. Die 145-V-Anzapfung ist für Ausgangsleistungen von 50 ... 100 W bestimmt; eine Ausgangsspannung von 110 V ±1% bei Netzspannungsschwankungen von 182 ... 236 V steht zur Verfügung. Die 160-V-Anzapfung wird bei Leistungsentnahme von 100 ... 200 W gewählt, wobei die Ausgangsspannung auf 110 V ±1 % bei Netzschwankungen von 172 ... 240 V konstant bleibt. Eine weitere Verbesserung der stabilisierenden Eigenschaften ergibt sich, wenn der Transformator Tr. nicht aus dem Netz, sondern mit der stabilisierten Ausgangsspannung gespeist wird.

Die gleichstromvormagnetisierten Drosseln bestehen aus den in Serie geschalteten 7- Ω -Sekundärwicklungen von je zwei Gegentakt-Ausgangstrafos (Philips "5186"), deren Primärwicklungen von dem Vormagnetisierungsstrom (0 ... 50 mA) durchflossen werden. Die Primärwicklungen sind verpolt in Reihe geschaltet, so daß sich die in ihnen induzierten Wechselspannungen aufheben. Die jeweils parallel geschalteten Widerstände R_{12} ... R_{15} dienen zur Vermeidung von Instabilitäten und zur Erreichung einer möglichst

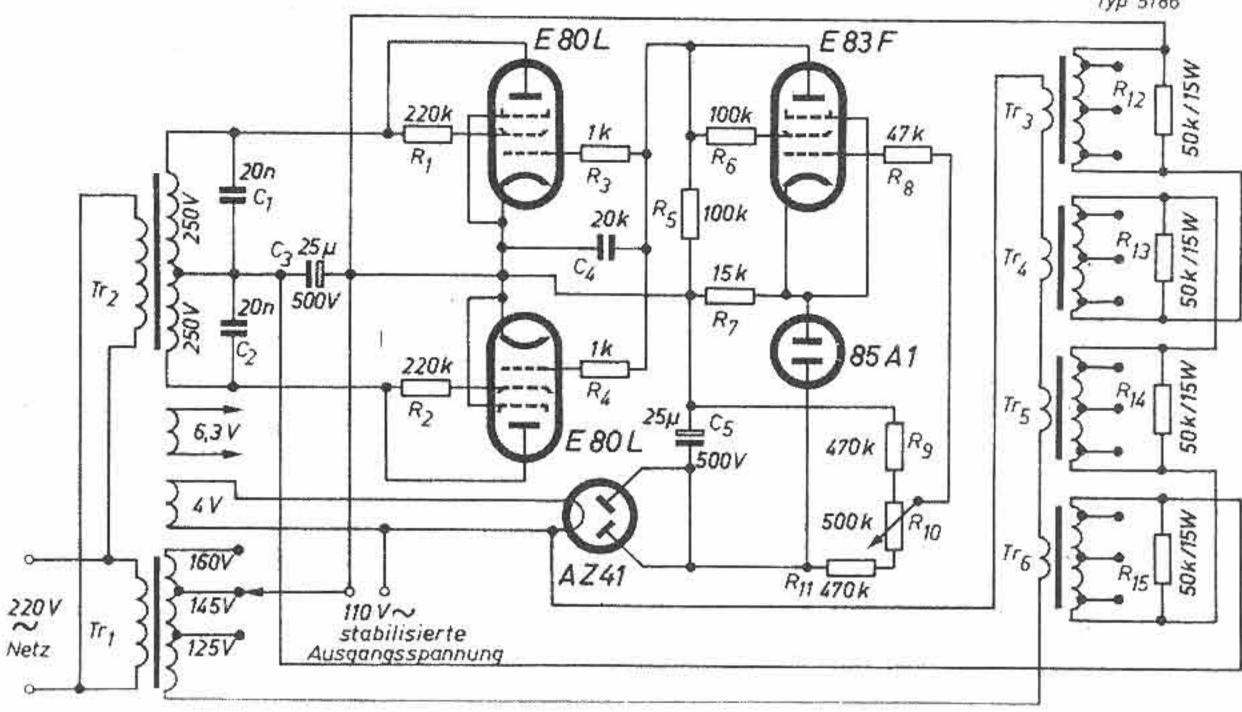
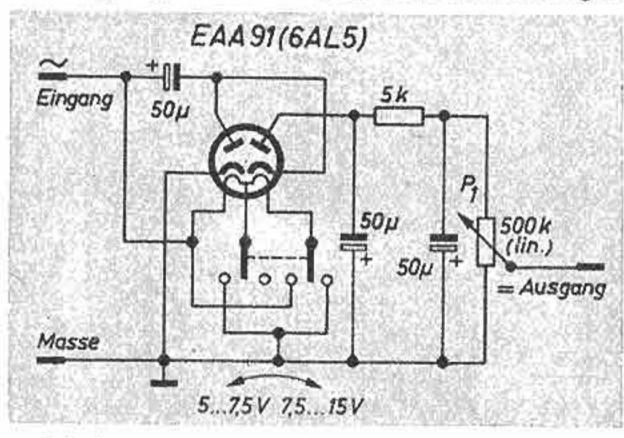


Abb. 3. Vollständige Schaltung des Gerätes nach Abb. 2 mit stabilisierter Ausgangswechselspannung

sinusförmigen Kurvenform der Ausgangsspannung.

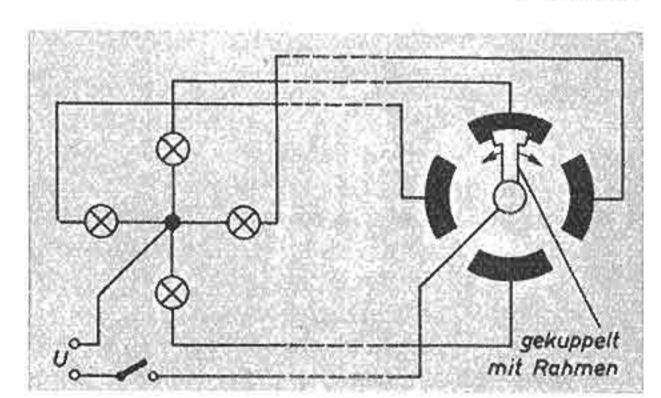

In die Gitter- und Schirmgitterzuleitungen der Röhren sind Dämpfungswiderstände aufgenommen worden, um die Anfachung hochfrequenter Schwingungen zu vermeiden. Der Kondensator C_4 an den Steuergittern der Röhren E 80 L dient zur Unterdrückung von niederfrequenten Schwankungen der Ausgangsspannung.

Schaltungs- und Werkstattswinke

Gitterspannungsgerät für Abgleicharbeiten

Zur Vermeidung der Schwierigkeiten und Unbequemlichkeiten, die die Verwendung einer Trockenbatterie als feste Gitterspannungsquelle beim Abgleich von Rundfunk- und Fernsehempfängern mit sich bringt, wurde die beschriebene einfache Einrichtung entwickelt. Die Wechselstromheizung der Röhren des abzugleichenden Gerätes wird in einer Spannungsverdopplerschaltung gleichgerichtet, um so eine ausreichend große negative Gitterspannung zu gewinnen. Durch ein RC-Filter wird ausreichend gesiebt, und durch den Regler P, kann auf den gewünschten Wert eingestellt werden. Die Strom-Leistungsfähigkeit der Anordnung ist begrenzt, und zwar durch die Daten der verwendeten Röhre und durch den 5-kOhm-Siebwiderstand. Für den vorgesehenen Verwendungszweck ist dies aber ohne Bedeutung, da ohnehin keine nennenswerte Belastbarkeit erforderlich ist.

Die Verdrahtung und die Art der Einzelteile sind nicht kritisch; die ganze Einrichtung kann klein und kompakt aufgebaut werden und läßt sich leicht an gut zugängliche Schaltungspunkte des abzugleichenden Gerätes anschließen. Als Wechsel-Eingangsspannung ist jede einseitig geerdete Spannung zwischen 5 und 15 V geeignet. Die drei Anschlußleitungen


Schaltung eines einfachen Hilfsgerätes für die Erzeugung einer Gitterwechselspannung

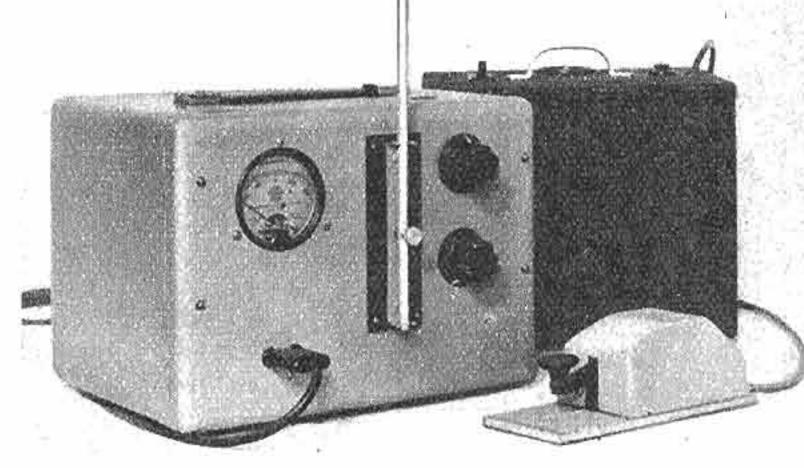
sind zweckmäßigerweise mit Krokodilklemmen zu versehen, so daß zum Gebrauch nur die Masseklemme an das Chassis des Empfängers, die Eingangsklemme an irgendeinen "heißen" Heizungspunkt und die Gleichspannungsklemme an den vorgeschriebenen Schaltungspunkt angeschlossen zu werden brauchen. Das beschriebene Gerät hat sich im praktischen Werkstattbetrieb gut bewährt und kann außer für Abgleicharbeiten auch für viele andere Zwecke, bei denen niedrige Gleichspannungen relativ geringer Belastbarkeit erforderlich sind, Verwendung finden.

Wendling

Fernanzeigevorrichtung für die Rahmenstellung

In FUNK-TECHNIK Bd. 7 [1952], H. 16, S. 442 und Bd. 8 [1953], H. 7, S. 204 wurden bereits einige Beispiele einer Anzeigemöglichkeit für die jeweilige Stellung der Außenantenne angegeben. Nachstehend sei eine weitere Möglichkeit einer Richtungsanzeige beschrieben, die nach dem Prinzip der Windrichtungsanzeiger, wie sie auf den Wetterwarten verwendet werden, arbeitet. Diese Anordnung gestattet, bei entsprechender Ausführung der Schleifkontakte am Rahmen, beliebig viele und volle Umdrehungen der Anordnung. Werden dagegen nur Winkel bis zu 360° bestrichen, so genügt als Zuführung zum Schleifer eine flexible Leitung. Die Schaltung läßt erkennen, daß zu jeder Himmelsrichtung ein Kontakt gehört, der mit einer Glühlampe in Verbindung steht. Man kann die Kontakte hierbei so anordnen, daß der Schleifer bei Zwischenstellungen gleichzeitig zwei Kontakte berührt und somit zwei Lampen zugleich aufleuchten. Durch Vermehrung der Kontakte, Lampen und Zuleitungen lassen sich recht genaue Anzeigen erreichen, doch dürfte die hier gezeigte Anordnung bereits in vielen Fällen ausreichen. W. Kermann

Amateursender für das 10-m-Band


Das 10-m-Amateurband bildet etwa die Grenze zwischen Kurzwelle und UKW, doch ähnelt die hier angewandte Technik schon sehr der UKW-Technik, ist aber andererseits zu langwellig, um mit Topfkreisen, Lecherleitungen usw. arbeiten zu können. Bei der Konstruktion von Sendern für dieses Amateurband müssen daher einige Kompromisse geschlossen werden.

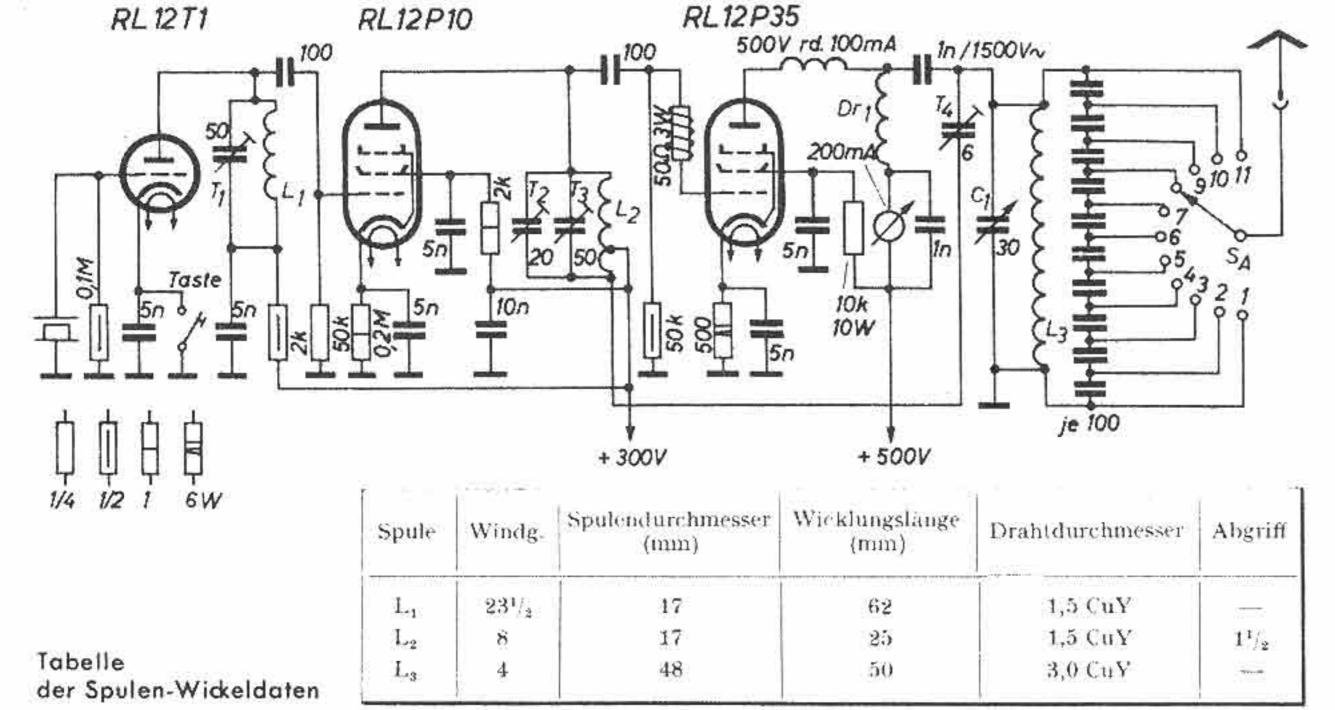
Wie die Erfahrung zeigt, hat der sogenannte Allbandsender, der z. B. auf vier verschiedene Amateurbereiche umgeschaltet werden kann, auf dem 10-m-Band einen meistens sehr ungünstigen Wirkungsgrad. Aus diesem Grund bevorzugen erfahrene Amateure einen besonderen 10-m-Sender. Bei dem interessierenden Frequenzbereich (28,0 ... 29,7 MHz) ist es verhältnismäßig schwierig, ausreichende Frequenzkonstanz zu erreichen. Eigenerregte Sender scheiden bei den hohen Anforderungen, die an Amateursender gestellt werden, für dieses Frequenzband aus. Mehrstufige Sender mit veränderbarer Frequenz erfordern einen relativ hohen Aufwand an Frequenzvervielfacherstufen. Benutzt man Quarzsteuerung, so kommt man mit einer Verdopplerstufe aus und spart andererseits an Größe, Gewicht und Materialkosten. Als Nachteil mag die feste Frequenz scheinen, jedoch lassen sich alle Quarze in der Frequenz etwas "ziehen", so daß eine gewisse Ausweichmöglichkeit gegeben ist.

Ein leicht aufzubauender 10-m-Sender, der sich auch für transportablen Betrieb eignet, ist in den Fotos und Skizzen gezeigt. Der Sender ist dreistufig aufgebaut, ar-

todenaggregat eine Grundgittervorspannung. Infolgedessen liegt der Arbeitspunkt etwa in der Mitte des geradlinigen Teils der U_a/l_a-Kennlinie. Wird die Röhre mit HF angesteuert, so tritt durch Ubersteuerung ein Gitterstrom auf, durch den am Gitterableitwiderstand (50 k Ω) eine negative Spannung abfällt. Der Arbeitspunkt wandert nach links und die Röhre arbeitet in C-Einstellung. Hierbei entstehen durch Verzerrungen starke Oberwellen, von denen die zweite im Anodenkreis ausgesiebt wird.

Die sich anschließende Leistungsendstufe ist ähnlich geschaltet. Auch hier wird das gleiche Verfahren der Gittervorspannungserzeugung angewandt und eine äußere Gittervorspannungsquelle vermieden. Es ist ein gewisser Nachteil, daß die am Katodenwiderstand abfallende

Außenansicht des 10-m-Amateuersenders mit Stromversorgungsgerät und Taste

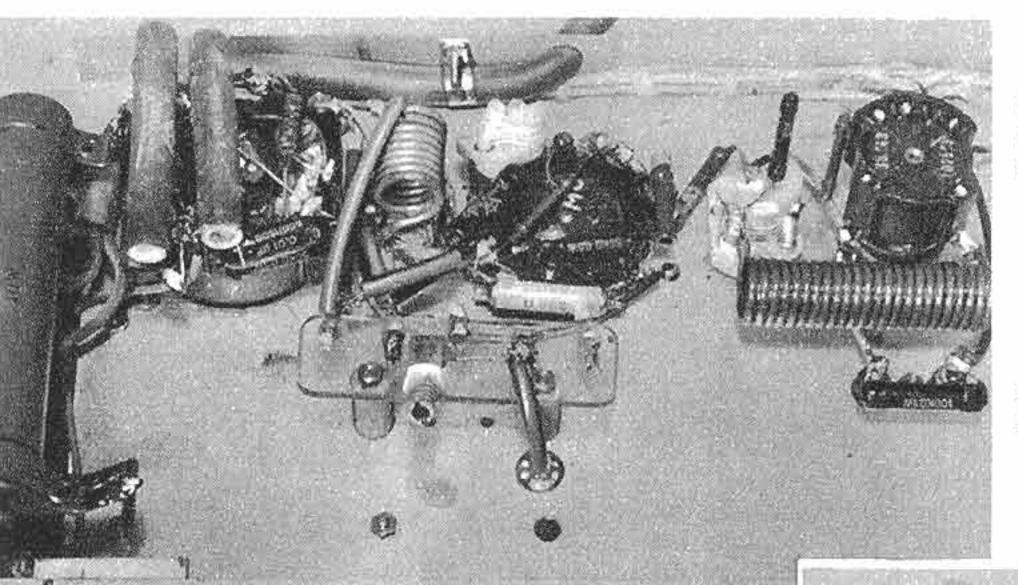

Verwendete Spezialteile

Keramische Lufttrimmer T1, T2, T3 (Hopt) Keramischer Stufenschalter SA: 1 \ 11 Kontakte (Mayr) Steuerquarz, 14,05 MHz

(Steeg & Reuter)

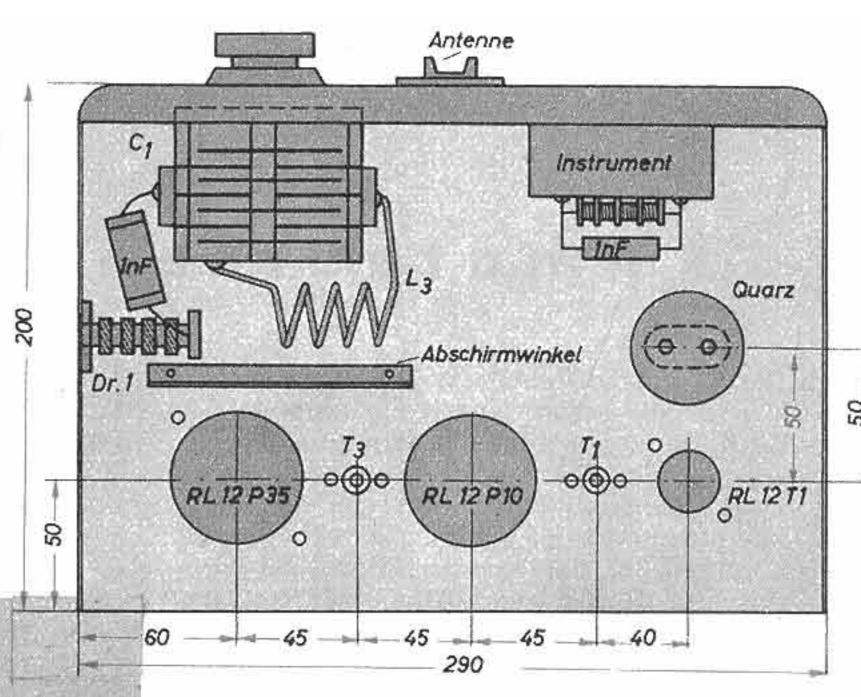
Antennenspannungsteiler **Anodenstrominstrument** Tankkreis Antennenhalterung Taste 20 300

Einzelteileanordnung auf der Frontplatte und Schaltung des Amateursenders für 10 m



beitet quarzgesteuert und ist mit kommerziellen Röhren bestückt. Der Kristalloszillator verwendet die Huth-Kühn-Schaltung und schwingt auf 14,05 MHz. Der Anodenkreis ist leicht nach oben verstimmt, um ein stabiles Arbeiten zu gewährleisten. Um zu vermeiden, daß die Taste Spannung führt, wird die Katodenleitung getastet. Die Ankopplung an die Frequenzverdopplerröhre RL12P10 erfolgt kapazitiv. Interessant ist die Art der Gittervorspannungserzeugung der FD-Röhre. Diese erhält über das KaSpannung die wirksame Anodenspannung etwas erniedrigt. Da es sich um einen Sender für Wechselstrombetrieb handelt, kann der Spannungsabfall leicht durch etwas höhere Anodenspannung ausgeglichen werden. Der Endverstärker ist neutralisiert. An sich wäre diese Maßnahme bei geschicktem Aufbau nicht erforderlich, doch wäre sorgfältige Abschirmung nötig, die nicht immer leicht zu erfüllen ist und gewisse Verluste mit sich bringt. Bewährt hat sich die Anoden-Neutralisation, die leicht einzustellen ist.

Hierber wird die Anodenkreisspule der Vorstufe am unteren Ende angezapft. Eine Symmetrierung ist nicht notwendig, da bei Pentoden nur verhältnismäßig kleine Kapazitäten zu neutralisieren sind. Die Anzapfung wird HF-mäßig geerdet, und das untere Ende an den Neutralisationstrimmer gelegt, der andererseits mit dem Anodenkreis der Endstufe verbunden ist. Als Neutralisationskondensator eignet sich ein hochwertiger Trimmer mit einer Kapazität von 2...5 pF. Um UKW-Störschwingungen sicher zu vermeiden, wurde vor dem Steuergitter der Endröhre eine kleine HF-Drossel angeordnet, die aus drei Windungen besteht und auf einen $50-\Omega$ -Widerstand (3 W) gewickelt wird. Der Anodenkreis ist parallel gespeist und wird durch einen 30-pF-Drehkondensator abgestimmt.


Die Auskopplung der Hochfrequenz erfolgt über einen kapazitiven Spannungsteiler, der aus zehn in Serie geschalteten keramischen Kondensatoren mit einer Kapazität von je 100 pF besteht und Eindrahtantennen beliebiger Länge anzukoppeln gestattet. Für transportable Verwendung hat sich eine etwa 2,5 m lange Stabantenne bewährt. Diese wird an der Frontplatte des Senders befestigt und in einer von der Frontplatte isolierten Halterung festgeschraubt. Sehr praktisch erweist sich Einpunktbefestigung mit Zweipunkthalterung (s. Gesamtansichtsfoto).

Für die Speisung des Senders werden 12,6 V (1,2 A), 350 V (50 mA) und

Verdrahtung ist nach HF-mäßigen Gesichtspunkten ausgeführt

Einzelteile-Anordnung auf der Montageplatte

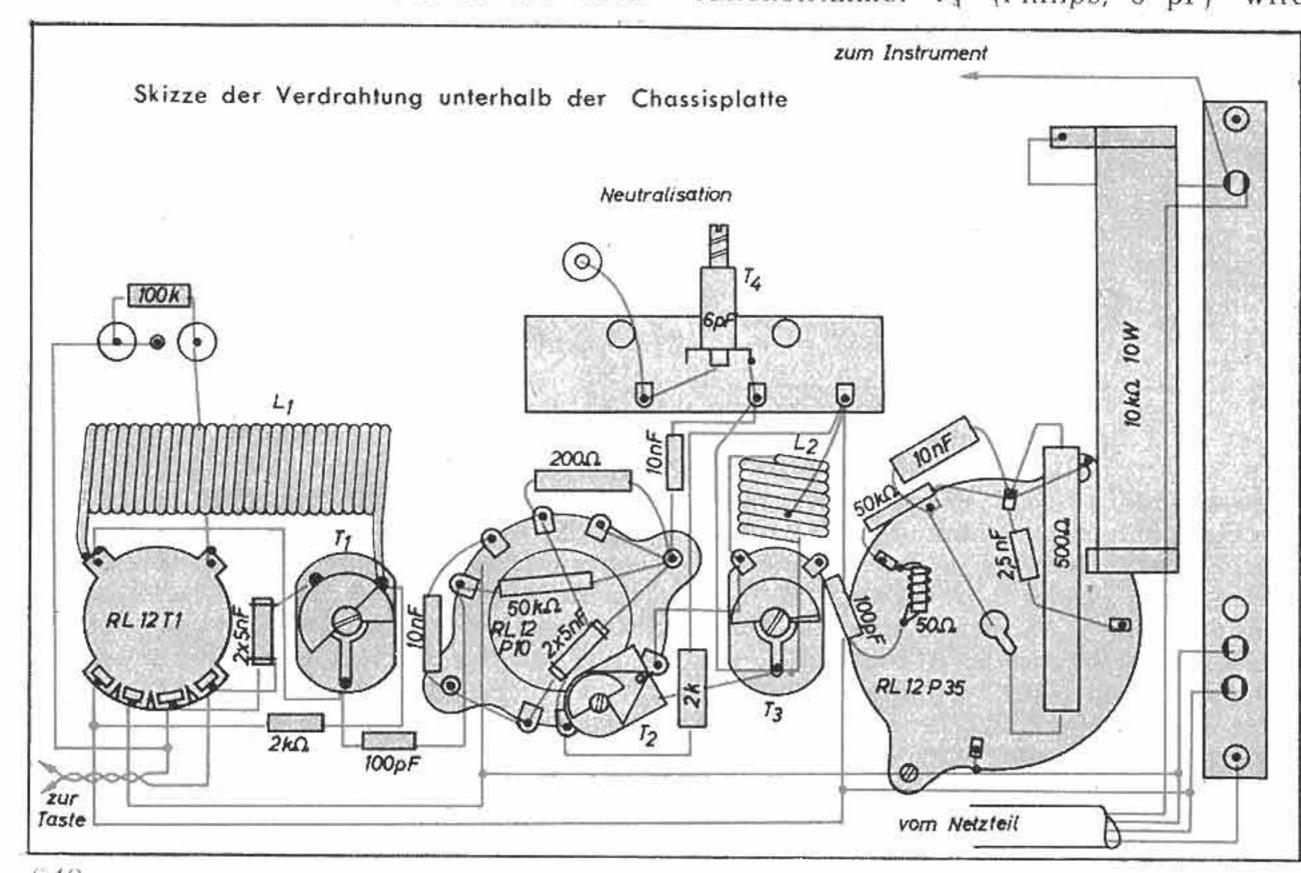
450 ... 750 V (60 ... 100 mA) benötigt. Die Speisung kann aus einem Wechselstromnetzteil oder aus einer Autobatterie unter Verwendung eines Umformers erfolgen. Zum Aufbau des 10-m-Senders läßt sich z. B. ein handelsübliches Metallgehäuse (Leistner - Gehäuse Nr. 1, $290 \times 205 \times$ 205 mm) verwenden. Wie die Fotos zeigen, befindet sich die Leistungsendröhre RL 12 P 35 links rückwärts (von hinten gesehen). Davor sind, durch eine Abschirmwand getrennt, die Tankkreisspule L₃ und (an der Frontplatte) der zuge-30-pF-Abstimmdrehkondensator hörige angeordnet. Über dem Drehkondensator ist der Antennenanpassungsschalter S_A , ein keramischer Mayr-Typ, befestigt. Die 100-pF-Kondensatoren sind an den Lötfahnen dieses Schalters festgelötet und müssen ausreichend spannungsfest sein. Neben der Leistungsendpentode sieht man einen Abschirmbecher, in dem die Verdopplerröhre RL 12 P 10 untergebracht ist. Weiter rechts schließt sich die Oszillatorröhre an, von der im Chassisausschnitt lediglich der Glaskolben zu sehen ist. Die Röhre befindet sich unterhalb der Montageplatte. An der Frontplatte erkennt man rechts das Anodenstrominstrument der Endröhre. Davor ist der Quarz untergebracht. Die Lufttrimmer sind gleichfalls unterhalb der Montageplatte befestigt. Die Rotoren können jedoch von oben bedient werden. In der Rückansicht sind die beiden Abgleichpunkte links und rechts vom Abschirmbecher zu sehen.

An der Frontplatte wurden links das Anodenkreisinstrument mit dem darunter befindlichen Buchsenpaar für den Anschluß der Morsetaste und in der Mitte

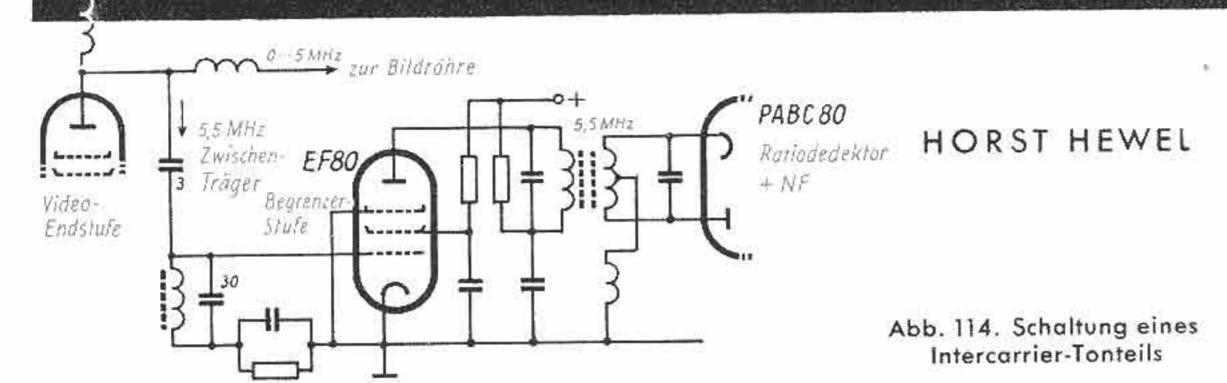
Ansichten des betriebsfertigen Senders ohne Gehäuse. Im rechten Foto ist

die Abschirmhaube der Verdopplerröhre (RL 12 P 35) abgenommen

die Isolierstoffleiste mit Halterung für die Befestigung der Stabantenne angeordnet. Rechts oben sind der Drehknopf für den Antennenspannungsteiler und darunter der Abstimmknopf für die Drehkondensatorabstimmung sichtbar.


Die Verdrahtung muß wohlüberlegt ausgeführt werden. Die Spulen L_1 , L_2 und die zugehörigen Kondensatoren und Trimmer sitzen dicht an den Röhrenfassungen. Die Spulen sind freitragend ausgeführt. Bei gutem Aufbau und zweckmäßiger Verdrahtung kann auf Abschirmungen verzichtet werden. Besondere Sorgfalt ist auf die Verdrahtung des Neutralisationszweiges zu legen. Da im Tankkreis hohe HF-Spannungen auftreten, muß für die Leitungsdurchführung eine keramische Buchse verwendet werden. Der Neutralisationstrimmer T_4 (Philips, 6 pF) wird

auf einer kleinen Plexiglas- oder Trolitulplatte befestigt. Die Hochlastwiderstände müssen so eingebaut werden, daß die entstehende Wärme frei abstrahlen kann. Gleichstrom führende Leitungen können gebündelt werden.


Der Abgleich des Senders erfolgt bei gedrückter Taste. Wir schalten in den Anodenkreis der Oszillatorröhre ein Milliamperemeter und gleichen T_1 ab, bis der Anodenstrom ruckartig abfällt. Nun wird T_1 vorsichtig weiter verändert, bis der Strom etwa den Mittelwert zwischen normalem und extremem Abfall aufweist. Dann schaltet man das Meßinstrument in die Anodenleitung der Verdopplerröhre und stimmt T_3 bei angeschlossener Endstufe auf Anodenstromminimum ab. Der Neutralisationsabgleich ist verhältnismäßig einfach. Man ändert T_4 , bis bei unbelasteter Endstufe der Anodenstrom beim Durchdrehen des Tankkreis-Drehkondensators C_1 konstant bleibt.

Zur Anpassung der jeweils verwendeten Antenne bringt man den Stufenschalter $S_{\rm A}$ zunächst in Stellung 2 und stimmt die Endstufe auf Resonanz ab (Anodenstromminimum). Nun dreht man den Stufenschalter auf die nächsten Schaltstellungen und stimmt dabei C, nach, bis schließlich nur ein ganz geringer Anodenstromrückgang auftritt. Die Endstufe gibt dann maximale Leistung an die Antenne ab.

Mit der beschriebenen Röhrenanordnung läßt sich je nach Eingangsleistung der Endstufe eine HF-Ausgangsleistung von 20 ... 30 W erreichen. Bei Telefoniebetrieb sind die gebräuchlichen Modulationsverfahren anwendbar. Besonders zu empfehlen ist Anodenspannungsmodulation. Der Mittelwert der ausmodulierten HF-Leistung erreicht bei dieser Modulationsart und Verwendung eines geeigneten Modulators etwa 20 ... 25 Watt.

FERNSEH-SERVICE-LEHRGANG

In der Vereinfachung der Ablenkgeräte kann man noch weitergehen und die Sägezahn-Endstufen mit Selbsterregung versehen. Das Schaltbild eines solchen "Leistungs-Sperrschwingers" gleicht im wesentlichen der Abb. 107, nur wird durch richtige Wahl der Zeitkonstanten (gegen die Kippdauer großes L/R des Schwingtrafos mit angekoppelter Zeilenspule bzw. der mit Koppelwicklung ausgerüsteten selbstschwingenden Vertikalspule) dafür gesorgt, daß die Trafo-Stromänderungen sägezahnförmig verlaufen. Hierbei wirkt die Gitter-Katodenstrecke gleichzeitig als Schalterdiode. Beispielsweise bewährten sich derartige Schwing-Endstufen im ehemaligen Einheitsfernseher E1 (1939) unter Benutzung von Spezialröhren mit getrennten Synchronisiergittern.

Die un mittelbare Mitnahme der Kippgeräte von den Synchronzeichen des Senders hat nun gewisse Nachteile, und zwar gerade auf Grund der sehr exakten zeitlichen Steuerung durch die empfangenen Einzelimpulse. In der Abb. 10 hatten wir schon erkannt, wie das Einsetzen der Rasterzeilen von der Synchronflankensteilheit beeinflußt wird. Ahnliche unregelmäßige Verschiebungen ergeben sich durch innere oder äußere Störungen, die eine wechselnde Impulsform vortäuschen. Darunter leidet vor allem die Empfangsgüte in größerer Entfernung vom Sender (Verwacklungen des Rasteraufbaus). Hier treten die Rauschspannungen der Verstärker (Grieß) und innere bzw. äußere Frequenzüberlagerungen (Moiré) mehr in den Vordergrund, deren Störamplitude zum Glück die Qualität der Helligkeitssteuerung nicht so sehr beeinträchtigt. Daher hat man besondere Mitnahmeschaltungen entwickelt, deren Aufgabe es ist, die Frequenz der Zeilenkippgeneratoren mit einer "größeren Zeitkonstante" durch Mittelwertsbildung über z. B. 100 Zeilenimpulse zu steuern. Dann fallen die unangenehmen Verschiebungen von Zeile zu Zeile (Krisselkanten vertikaler Bildlinien) fort. Dafür kann es nach länger dauernden, unregelmäßigen Störungen (zu diesen zählen u. U. sogar die Halbzeilenimpulse im Vertikalrücklauf) zu einem seitlichen Flattern ganzer Bildzonen kommen, wenn die betreffenden Zeitkonstanten nicht richtig gewählt sind.

Die überwiegende Mehrzahl der deutschen Fernsehempfänger benutzt zu einer solchen mittelbaren Synchronisierung des Zeilenkipps den sogenannten "Phasendiskriminator" (Abb. 115) mit Diodenbrücke. In dieser Anordnung wird die Phasenlage der vom

Amplitudensieb stammenden Empfangsimpulse mit einer vom örtlichen, freischwingenden Kippgenerator abgeleiteten Sägezahnspannung verglichen und daraus eine Regelspannung gewonnen, die mit gewisser Trägheit eine Frequenz- und Phasenkorrektur des Kippgenerators vornimmt. In der Praxis geht das z. B. so vor sich: Man gewinnt mit einer (aus der NF-Verstärkertechnik bekannten) Phasenumkehrröhre (Ph in Abb. 115) erdsymmetrische Gegentaktspannungen der Empfangsimpulse und leitet sie den in Reihe geschalteten Dioden D, und D, (Spitzengleichrichter) zu. Dann werden an den Punkten X und Y der aus den Dioden-Innen- und Außenwiderständen gebildeten Brücke keine Spannungsunterschiede gegeneinander und gegen Masse bestehen. Sobald man aber an X und Y über die RC-Glieder zusätzlich eine Wechselspannung legt, wird je nach ihrer Phasenlage zu den Impulsen über die eine oder die andere Diode ein pulsierender Zusatzstrom fließen, der (durch die Zeitkonstanten geglättet) eine um Null herSo zeigt die Abb. 116 A eine Phasensynchronisierschaltung für einen Sperrschwinger. Hier werden die positiven Synchronimpulse und die örtliche positive Sägezahnspannung additiv auf das stark negativ
vorgespannte Gitter (Katodenwiderstand!)
der Regelröhre Ph gegeben. Demzufolge
kann nach Abb. 116 B nur bei annähernder
Phasengleichheit (am Ende des Sägezahnhinlaufs) ein impulsartiger Stromfluß durch Ph
stattfinden, dessen Zeitdauer von der Phasenlage abhängt. Nach Integration durch die

(Schluß)

Phasengleichheit (am Ende des Sägezahnhinlaufs) ein impulsartiger Stromfluß durch Ph stattfinden, dessen Zeitdauer von der Phasenlage abhängt. Nach Integration durch die Glättungsglieder regelt der wechselnde Katodenstrom von Ph die Ruhevorspannung am R_G des Sperrschwingers (und damit seine Frequenz) ein. Derartige Koinzidenzschaltungen können z. B. auch mit Hexoden oder Enneoden (Steuerspannungen auf getrennten Gittern!) ausgeführt werden.

Der Tonempfangsteil

Die Übermittlung der zum Fernsehbild gehörenden Tonbegleitung erfolgt, wie eingangs erwähnt (Abb. 5, Teil 1), durch einen zweiten, auf die gleiche Antenne geschalteten Sender mit Frequenzmodulation, dessen Betriebsfrequenz in jedem Kanal genau um 5,5 MHz höher als die des Bildsenders liegt. Im Abschnitt über die Empfängergrundlagen (Abb. 13, Teil 3) erfuhren wir, daß unser Fernsehgerät als eine Art Erwei terung eines

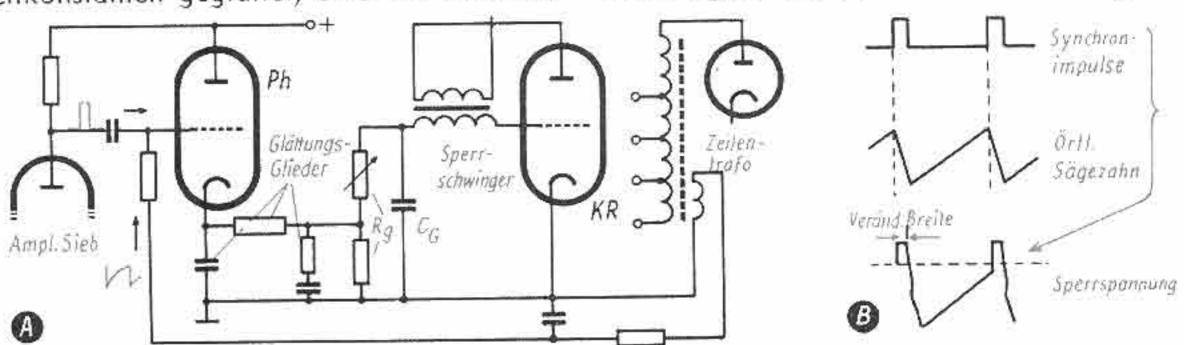
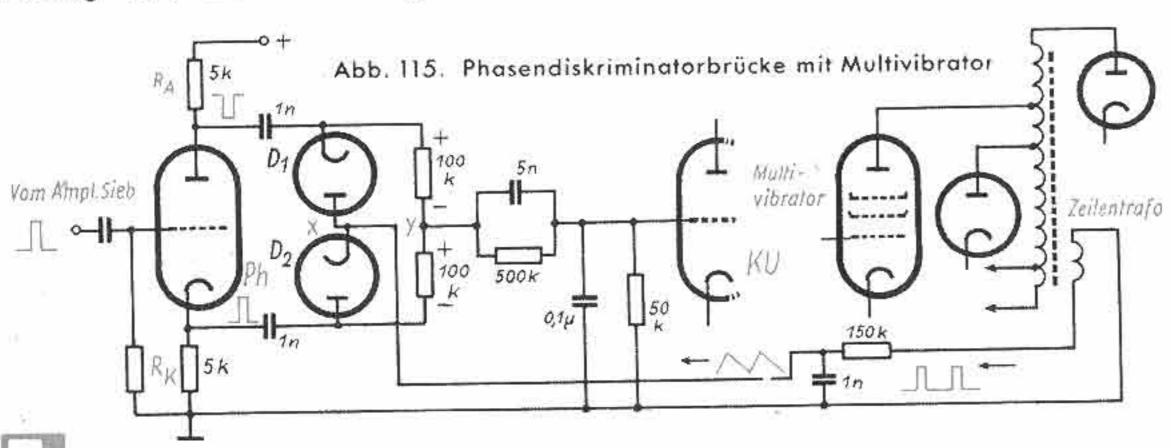
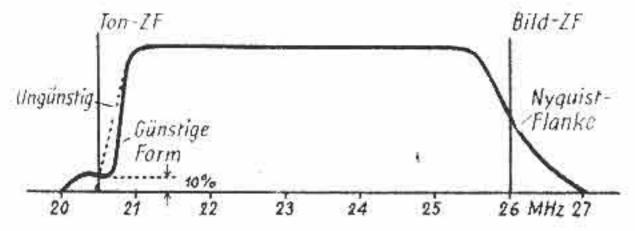



Abb. 116. Phasensynchronisierung eines Sperrschwingers

umpendelnde "Gleich"-Spannung an dem RC-Spannungsteiler erzeugt. Mit dieser Regelspannung wird jetzt die Frequenz des Multivibrators (Arbeitspunktverschiebung der Röhre KU) gesteuert. Als Vergleichs-Wechselspannung dient ein Zeilensägezahn, den man nicht direkt aus dem freischwingenden Multivibrator entnimmt, sondern aus den von der Zeilenendstufe gelieferten Rücklaufimpulsen durch Integration über ein RC-Glied herstellt. Eine entsprechende Polung der verglichenen Spannungen sorgt dafür, daß zur Erreichung der richtigen Zeilenphase im Raster die Regelanordnung nur um den Nulldurchgang des steilen Rücklaufs herum stabil arbeitet, d. h. einer örtlichen Frequenzänderung entgegen wirkt. Die Dimensionierung der Glättungsglieder wird von den praktischen Erfahrungen (Störanfälligkeit usw.) bestimmt; es sind auch andere Kombinationen der Schaltelemente und ihrer Speisung möglich. modernen UKW-Supers für Tonempfang betrachtet werden kann. Wir werden daher die gleichen Schaltungsprinzipien im Tonteil vorfinden, also nach der Mischung die ZF-Verstärkung, die Begrenzung und FM-Gleichrichtung, gefolgt von der NF-Verstärkung. Es gibt nun zwei Möglichkeiten, eine Tonzwischenfrequenz abzuleiten.

1. Die höherliegende Oszillatorfrequenz erzeugt bei der Mischung laut Abb. 46, Teil (8), eine getrennte Ton-ZF, die um 5,5 MHz niedriger als der Bild-ZF-Träger ist, der bisher meist auf etwa 26 MHz gelegt wurde. So bekommen wir einen Tonträger von rund 20,5 MHz, d. h. fast den doppelten Wert unserer "UKW-Standard-Zwischenfrequenz" von 10,7 MHz. Die ZF-Stufenverstärkung ist bei 20 MHz (Röhreneingangswiderstände!) noch nicht wesentlich schlechter, allerdings wird die Bandbreite größer als es an und für sich bei dem etwas kleineren Frequenzhub des Fernsehtons von ± 50 kHz (gegen ± 75 kHz auf UKW) nötig wäre. Die AM-Begrenzung und FM-Demodulation (meist mit Ratiodetektor, seltener mit der Enneode EQ 80) bietet keine besonderen Schwierigkeiten. Die "Abspaltung" der Ton-ZF wird gewöhnlich nicht am Mischröhrenausgang selbst, sondern erst hinter der ersten bzw. zweiten breitbandigen Bild-ZF-Stufe vorgenommen, die eine zusätzliche Verstärkung des Tonträgers bewirken. In Abb. 117 finden wir zwei Beispiele für die Auskopplung: Einmal filtert man die Ton-ZF


am Anodenkreis der Bild-ZF-Stufe heraus ("Ton"-Kreis lose über 3 pF gekoppelt), oder man schaltet den Tonkreis über eine Koppelspule induktiv in die Bildstufen-Katode ein. In beiden Fällen erreichen wir gleichzeitig eine Unterdrückung der Ton-ZF-Störungen im Bildkanal (5,5 MHz-,,Perlenschnur" und Modulationsstreifen im Bildraster), die oft durch weitere ähnlich geschaltete Saugkreise im Bild-ZF-Verstärker unterstützt wird. Erfolgt die "Bildkontrast"-Regelung von Hand durch Anderung der Bild-ZF-Verstärkung in den ersten Stufen, so wird mit diesen Koppelschaltungen u. U. bei schlechter Begrenzung eine Rückwirkung auf die Tonlautstärke zu verspüren sein.

Die verhältnismäßig kleine Bandbreite des Ton-ZF-Kanals ermöglicht es auch dem Laien, die richtige Abstimmung des breiten Bildkanals vorzunehmen. Stimmt man auf saubere und laute Tonwiedergabe, d. h. auf die richtige Zwischenfrequenz von 20,5 MHz als Tonträger ab, dann muß automatisch der Bildträger 5,5 MHz höher (also auf 26 MHz) liegen, auf der für die Bildqualität günstigsten Mitte der flach verlaufenden Nyquistflanke des ordnungsgemäß getrimmten Bild-ZF-Teils. Die Praxis zeigt leider manchmal etwas anderes: Sauberer Ton und klarstes Bild erscheinen bei verschiedenen Einstellungen des Abstimmknopfes. Dafür können mehrere Gründe verantwortlich sein. Die Nyquistflanke ist - z. T. aus Selektionsgründen - nicht immer prüffeldmäßig in der idealen Form zu verwirklichen; sie mag z. B. steiler verlaufen. Wenn sich jetzt der betreffende ZF-,, Eckkreis" (1 in Abb. 54) nachträglich in seiner Frequenz nach unten verschoben hat (2% Verschiebung sind bei 26 MHz schon 520 kHz), so wird der mit dem Ton eingestellte 26-MHz-Bildträger sehr weit unten auf der Flanke liegen und, abgesehen vom Verstärkungsverlust, eine starke Plastik im Bild hervorrufen. Andererseits gerät man dann bei Abstimmung auf beste Bildqualität (25,5 MHz im Beispiel) im Tonkanal wieder 500 kHz tiefer als die Sollfrequenz und wird allenfalls eine leise, verzerrte Tonwiedergabe hören. Umgekehrt kann eine Verschiebung der Mittenfrequenz des FM-Detektors eingetreten sein; der saubere Ton verlangt z. B. eine Einstellung auf vielleicht 20,2 MHz, und schon sitzen wir zu hoch auf der Bild-ZF-Flanke. Die meisten modernen, mit Kanalschalter

(Spulenrevolver) im Tuner (engl. = Abstimmeinheit) arbeitenden FS-Empfänger lassen für jeden 7 MHz-Sendekanal nur eine Feineinstellung (Oszillatortrimmer) um etwa ± 1 MHz zu, so daß selbst ein Laie nach Vorwahl des gewünschten Kanals sofort den richtigen Abstimmpunkt findet. Ein durchgehender Abstimmbereich ist schwieriger zu beherrschen und erfordert ein gewisses Feingefühl zur Toneinstellung: + 50 kHz

1, ZF-Srufe 2, ZF (Bild)

| Spild 2F | Spild 2 | Spild 2

(Senderhub) sind nur ± 1/1000 des Bandes III (174...223 MHz). Durch die doppelt so hohen Trägerfrequenzen gegen das UKW-Band II (um 90 MHz) macht sich hier die Frequenzwanderung des Mischoszillators noch unangenehmer bemerkbar, einmal beimlangsamen Warmwerden des Geräts und ferner als mechanische Frequenzmodulation, d.h. als akustische Rückkopplung über die Abstimmelemente.

2. Die technische Eigenart der Fernsehübertragung mit zwei Sendern für Bild und Ton im festen Abstand von 5,5 MHz hat uns die Grundlage für ein anderes System der Tonübermittlung im FS-Empfänger vermittelt: das Intercarrier-Verfahren (engl. = Zwischenträger). Bei ihm läuft die Ton-ZF mit durch den gesamten Bild-ZF-Teil hindurch und bildet im anschließenden Gleichrichter mit dem Bild-ZF-Träger die Differenzfrequenz von 5,5 MHz, die daher mit dem Ton frequenz- und gleichzeitig mit den Bildsignalen amplitudenmoduliert ist und im Videoteil abgenommen wird. Nach Verstärkung und guter AM-Begrenzung kann dieser FM-Tonzwischenträger demoduliert werden. Da die "Zwischenfrequenz" jetzt unabhängig von der HF-Abstimmung immer konstant gleich dem Senderabstand 5,5 MHz bleibt, macht eine Frequenzverwerfung im Mischteil nichts mehr aus, und man hat mehr Freiheit zum Einstellen des besten Bildes. Beim völligen Ausfall des Bildsenders wird natürlich auch der Zwischenträger verschwinden. Deshalb hat man in der CCIR-Norm die AM-Durchsteuerung der Fernsehsender nach unten (Bildweiß bei Negativmodulation) begrenzt: der "Trägerrest" darf nie unter 10% (Abb. 3, Teil (1) absinken. Die Amplituden der beiden im Bildgleichrichter gemischten "Empfangs"-(Ton-ZF) und "Oszillator"-(Bild-ZF) Frequenzen müssen im richtigen Verhältnis zueinander stehen, d. h., die Oszillatorspannung sollte stets größer sein. Man muß also die Gesamtdurchlaßkurve des Bild-ZF-Teils so gestalten (Abb. 118), daß die Ton-ZF-Amplitude auf etwa 5...10% des Bildträgers geschwächt wird, und versuchen, eine Art "Treppenstufe" auf der Kurve einzutrimmen, damit das günstige Verhältnis bei Frequenzschwankungen der ZF erhalten bleibt. Eine schräge Flanke (in Abb. 118 gestrichelt gezeichnet) sollte vermieden werden.

In den Schaltungen der deutschen Fernsehempfänger mit Intercarrier-Ton findet man als Standard die Abnahme des 5,5-MHz-Trägers am Ausgang der Video-Endstufe (Abb. 114), um möglichst hohe Spannungsbeträge auf die nachgeschaltete Begrenzerstufe zu bringen, die im Verein mit der AM-Unterdrückung des FM-Gleichrichters den störenden Amplitudenbrumm aus den Bildsignalen beseitigen soll. Es besteht eine gewisse Brummabhängigkeit vom "Bildkontrast", denn bei flau eingestelltem Bild ist mit der Video- auch die Zwischenträgerspannung abgesunken und verursacht dann eine un-

genügende Aussteuerung des Begrenzers. Statt der kapazitiven kann auch eine induktive Auskopplung des Zwischenträgers erfolgen; wie bei der Ton-ZF-Verstärkung wirkt der 5,5-MHz-Kreis als (videofrequenter) Saugkreis gegen die Tonstörungen im Bild. Verbesserungen lassen sich mit einer zusätzlichen "ZF"-Vorstufe erreichen, die entweder vom Videoausgang oder aber direkt vom Videoeingang am Gleichrichter gespeist wird. In diesem Fall bleibt die Tonqualität unbeeinflußt von der Kontrasteinstellung in der Videostufe, vorausgesetzt, daß eine Regelautomatik die ZF-Spannungen konstant hält.

Die Stromversorgung

Aus Preis- und Brummgründen werden die meisten FS-Empfänger, wie in Teil (3) erwähnt, als Allstromgeräte für 220 V gebaut. Man bevorzugt Trockengleichrichter für die Anodenstromversorgung, die durchschnittlich einen Bedarf von 300 mA bei etwa 190 V befriedigen muß. Je nach Bauart werden von der mit einer Drossel und etwa 100 µF geglätteten Sammelgleichspannung noch weitere RC-Siebketten abgezweigt, die z.B. die Stromschwankungen der 50-Hz-Vertikalablenkung abriegeln sollen (Abb. 119). Der Serien-Heizkreis mit E- und P-Röhren für 300 mA ist gleichfalls von Fabrikat zu Fabrikat etwas verschieden geschaltet. Generell werden die brummempfindlichen Röhren (Video, Ton, Zeilenkipp) an das "kalte" Ende der Heizkette gelegt, während die Ablenkendstufen das höchste Potential gegen Chassis innehaben. Die überschüssige Spannung wird u. a. von einem Heißleiter (NTC-Widerstand) aufgebraucht, der in bekannter Weise den Anheizschutz der Röhren besorgt. Die besonders "gefährlichen" Röhren (mit kapazitiver HF- oder ZF-Einstreuung von der Katode usw. auf den Heizfaden) werden mit induktionsarmen Kondensatoren HF-mäßig auf Chassispotential gebracht, z. B. der Ratiodetektor (dessen starke ZF-Oberwellen sonst den Empfang gewisser. Fernsehkanäle durch "Eigenmoiré"-Bildung stören), die letzte Bild-ZF-Stufe und auch die Zeilendiode (von der Rundfunkstörungen - 15-kHz-Harmonische - ins Netz gelangen können). Der HF-Teil ist für sich verdrosselt und verblockt, um die Oszillatorenausstrahlung gering zu halten. Die Wechselstromgeräte mit Transformator und Parallelheizung müssen gleichfalls entsprechende HF-Filter enthalten. Auch sie haben, wie die Allstromausführungen, eine ziemlich lange Anheizzeit, da der endgültige Betriebszustand schrittweise erreicht wird: Der Tonempfang ist als erstes vorhanden (Schnellheizkatoden der Verstärkerröhren!); die wärmeträgen Katoden der Zeilenablenkröhren (Keramikisolation in der Zeilendiode) verzögern das Einsetzen der Ablenkströme, die ihrerseits wieder die indirekt geheizte Katode des Hochspannungsgleichrichters auf Glut bringen müssen. Erst dann kann das Bild auf dem Schirm erscheinen.

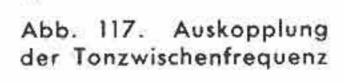
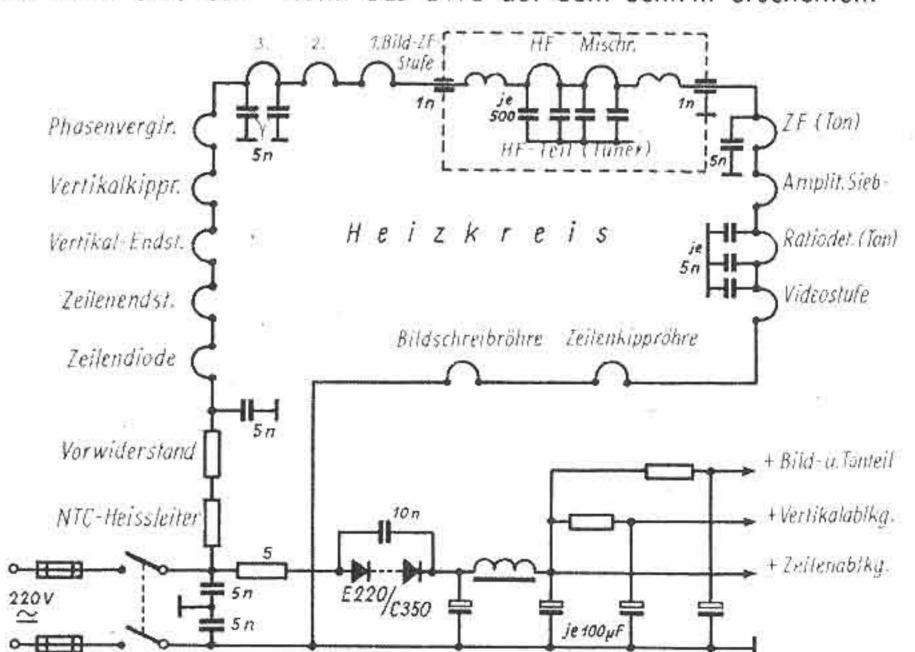



Abb.119. Allstrom-Netzteil eines Fernsehempfängers

Abb. 118. Bild-ZF-Kurve beimIntercarrierverfahren

Röhrenvoltmeter »MINIMETER«

Universell verwendbare Röhrenvoltmeter sind in Werkstatt und Labor praktisch unentbehrlich. Daher ist es eine dankbare Aufgabe, die vorhandenen Werkstatteinrichtungen durch ein modernes Röhrenvoltmeter zu ergänzen, das sich den auftretenden Anforderungen gewachsen zeigt. Mit dem hier beschriebenen Röhrenvoltmeter können Gleichspannungen von 1 ... 600 Volt nahezu belastungslos (20 M Ω bzw. 10 M Ω) gemessen werden. Dabei ist es gleichgültig, welcher Pol geerdet wird. Sogar Spannungen, deren beide Pole nicht auf das Erdpotential bezogen sind und die hochohmig gegenüber Erde liegen, lassen sich messen. Ein besonderer Vorteil des "Minimeter" ist die gefällige Bauform. Die Gehäuseabmessungen entsprechen den Ausmaßen der anderen Meßgeräte der Minitestserie.

Technische Daten

Bereiche

1 V, 3 V, 10 V, 30 V, 100 V, 300 V Gleichund Wechselspannung¹), Innenwiderstand 10 M Ω , unsymmetrisch

2 V, 6 V, 20 V, 60 V, 200 V, 600 V Gleichund Wechselspannung¹), Innenwiderstand 20 $M\Omega$, symmetrisch

100 V, 300 V, 1000 V, 3000 V, 10000 V, 30000 V Gleichspannung, Innenwiderstand 1000 $M\Omega_{\rm s}$ unsymmetrisch

200 V, 800 V, 2000 V, 6000 V, 20000 V Gleichspannung, Innenwiderstand 1000 M Ω , symmetrisch

Hochempfindliches Kompensationsvoltmeter in A-Betrieb

Eingangswiderstand 20 M Ω (10 M Ω)

Gleich- und Wechselspannungsmessungen

Tastköpfe für Gleichspannungs-, Wechselspannungs- und Hochspannungsmessungen bis 30 kV

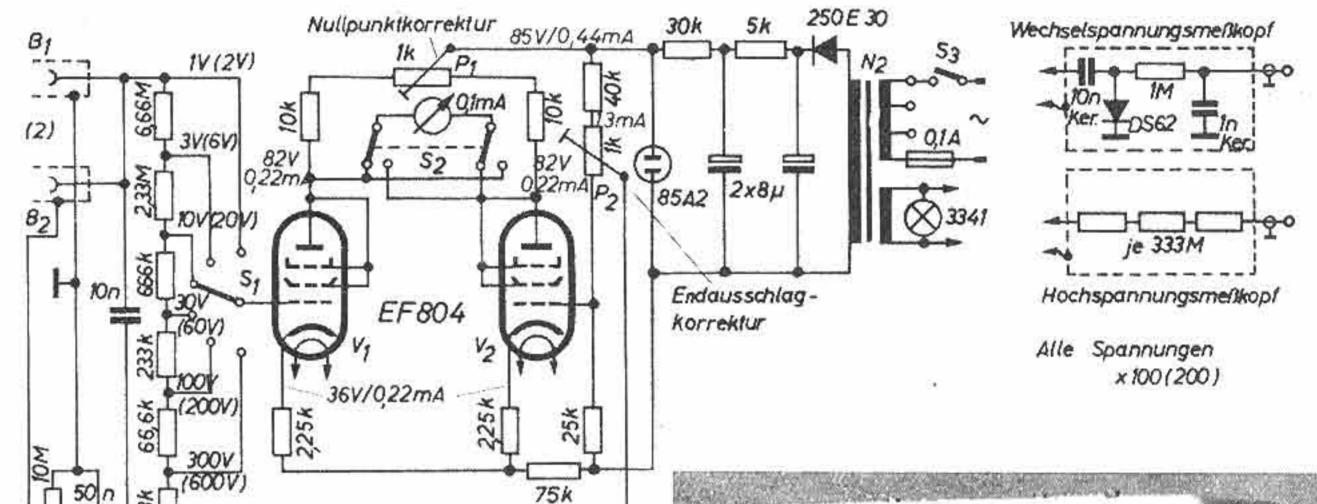
Messungen positiver und negativer Spannungen durch einfaches Umschalten

Messung von Spannungen, deren Zweige gegen das Erdpotential verschoben sind, ohne Beeinflussung und Verstimmung möglich

Linearer Skalenverlauf

Unabhängigkeit von Netzspannungsschwankungen

Genauigkeit größer als 2,5% vom Skalenendwert in allen Bereichen ohne Neueichung der Skala


Endausschlag 1 V im empfindlichsten Bereich

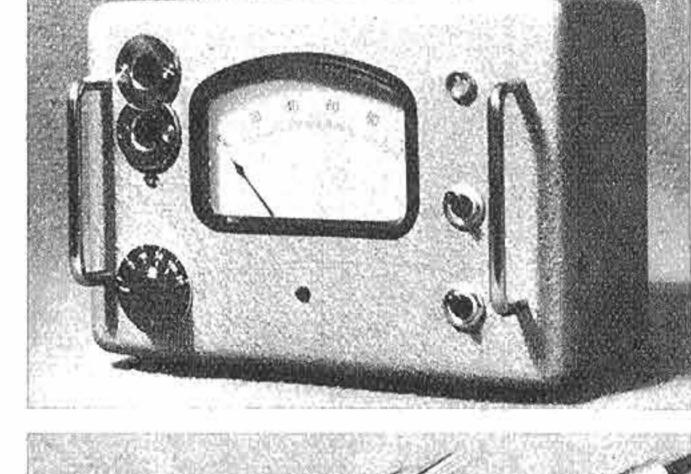
Unempfindlichkeit gegenüber mechanischer Beanspruchung

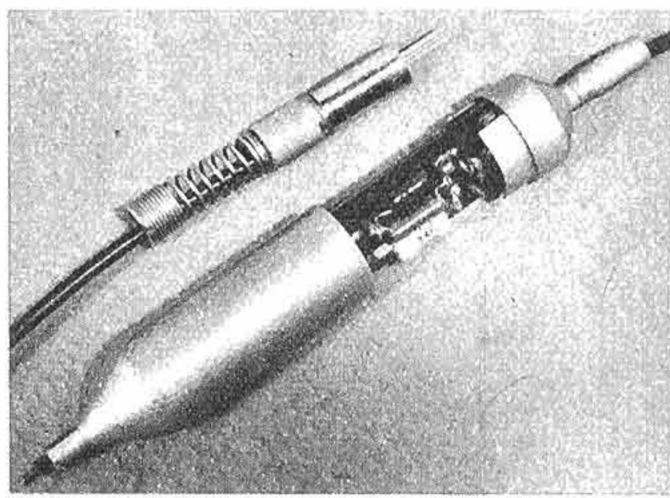
Frequenzbereich 10 Hz...250 MHz (bei Verwendung eines besonderen Tastkopfes)

1) Bei Wechselspannungsmessungen darf die max. Sperrspannung der Diode DS 62 nicht überschritten werden Für vielseitige Verwendbarkeit sind verschiedene Tastköpfe erforderlich. Der eine Tastkopf gestattet, Gleichspannungen an sehr brummempfindlichen Stellen zu messen, während der zweite Tastkopf für Wechselspannungsmessungen eingerichtet ist. Ein dritter Tastkopf kommt für die Messung von Hochspannungen in Betracht. Da in erster Linie damit die Anodenspannung von Fernseh-Bildröhren gemessen werden soll, ist die Belastung minimal. Schließlich ist es möglich, mit

Dann zeigen beide Röhren im allgemeinen gleiches Verhalten, so daß sich Betriebsspannungsänderungen von selbst auskompensieren. Ferner wird die Stabilität der Schaltung durch eine stark bemessene Gegenkopplung (große Katodenwiderstände) erhöht. Die hohe Anzeigempfindlichkeit wird durch den Fußpunktwiderstand (75 k Ω) bewirkt, der vom gemeinsamen Katodenstrom durchflossen ist. Diese Anordnung arbeitet ähnlich wie die bekannte Phasenumkehr-

Spannungen gegen -Ua gemessen

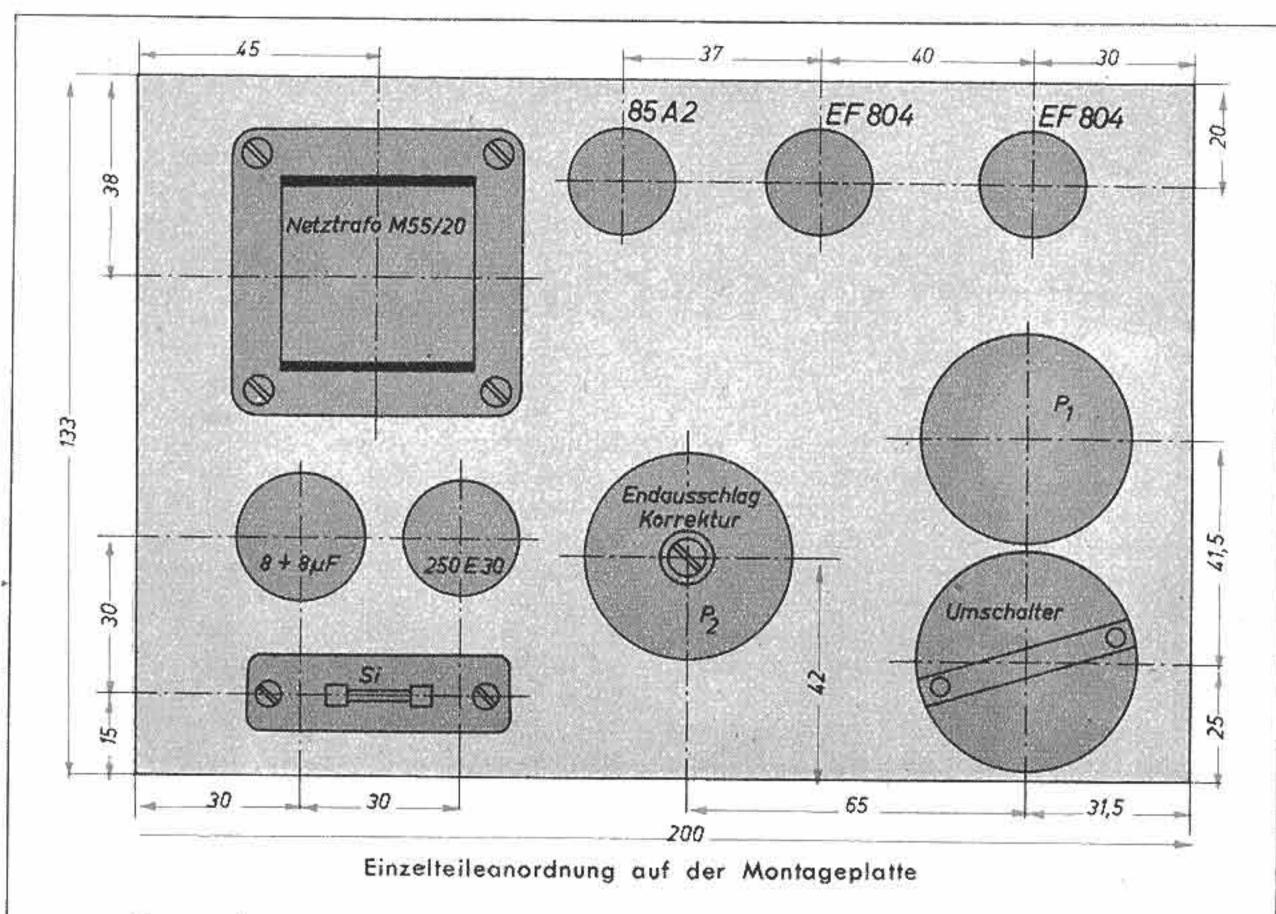

Schaltung und Außenansicht des "Minimeter"

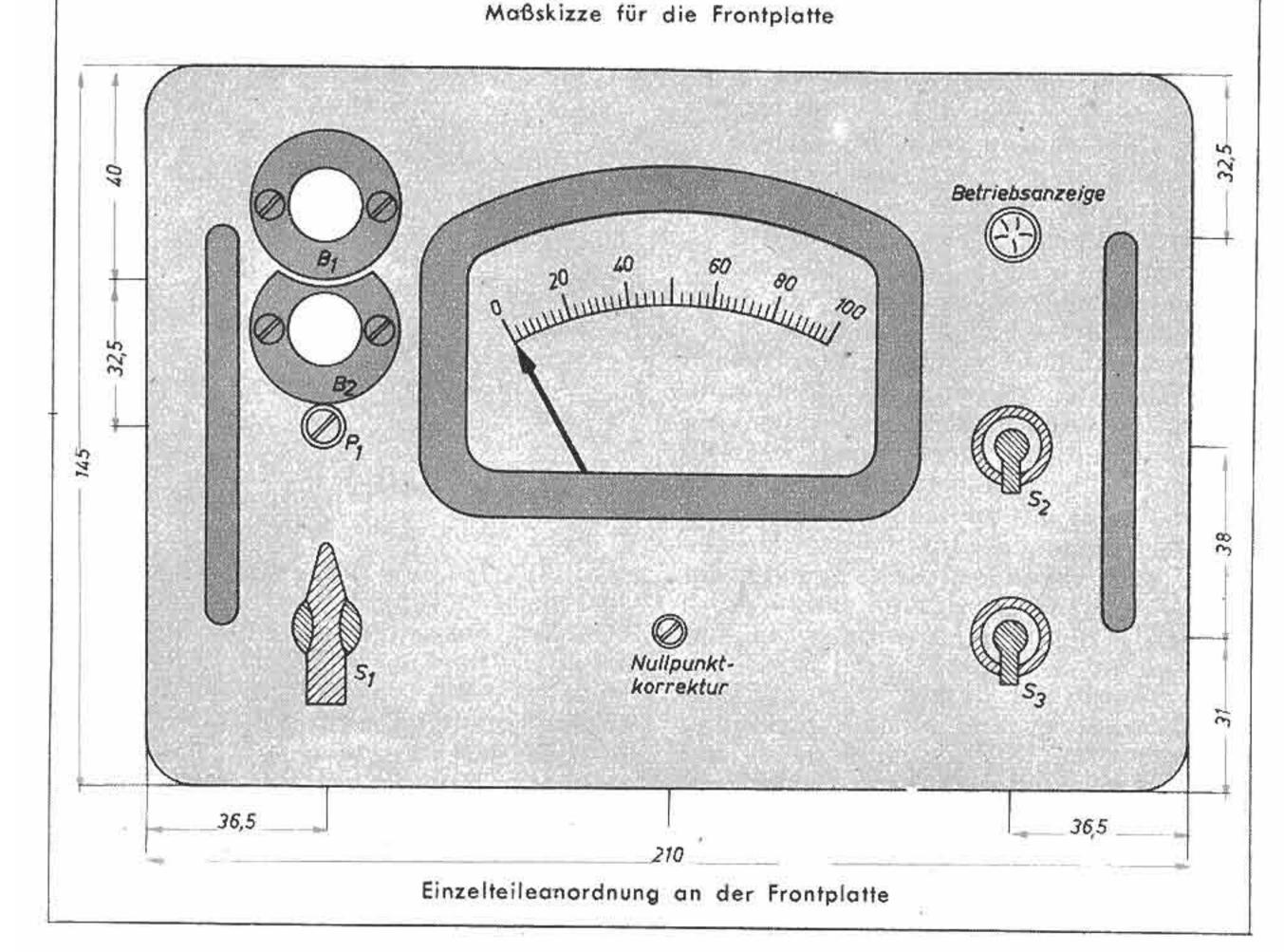

Hilfe eines weiteren Zusatzes auch Widerstandsmessungen auszuführen. Hier handelt es sich in erster Linie um die genaue Messung höchster Widerstände, doch kann der Zusatz auch für die Messung niedrigerer Widerstandswerte herangezogen werden.

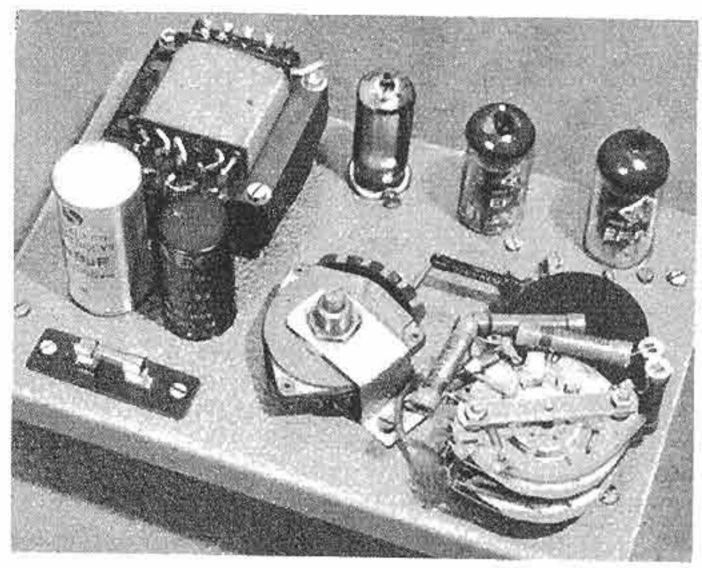
Schaltungseinzelheiten

Das "Minimeter" ist ein in A-Betrieb arbeitendes Kompensations-Voltmeter. Es ist mit einer nahezu völlig linearen Skala ausgerüstet und von äußeren Spannungsschwankungen unabhängig. Schaltungstechnisch handelt es sich um eine Brücke, deren obere Zweige durch die beiden Arbeitswiderstände (je 10 k Ω) und deren untere Zweige durch die beiden Röhrensysteme gebildet werden. Von diesen vier Widerständen sind drei fest, während der vierte, das Röhrensystem V₁, den veränderbaren Widerstand darstellt. Sind die beiden Widerstandspaare gleich groß, so zeigt das zwischen den Brückenzweigen liegende Instrument keinen Strom an. Verändert sich jedoch der Innenwiderstand der linken Röhre durch Anlegen einer Fremdspannung an, das Steuergitter, so zeigt das Instrument einen Ausschlag, dessen Richtung von der Polarität der angelegten Spannung abhängt. Um nicht ein Instrument mit zentrischem Nullpunkt verwenden zu müssen, liegt in der Instrumentenzuleitung ein Polwender.

Da zwei gleiche Röhren benutzt werden, bereitet es keine Schwierigkeiten, die Brückenzweige gleich groß zu halten.




Tastkopf für Wechselspannungsmessungen


schaltung, bei der das zweite System in Gitterbasisanordnung geschaltet ist. Beim Absinken des Stromes in der Meßröhre steigt gleichzeitig der Strom in der Kompensationsröhre an. Die Brücke wird stärker verstimmt, und der Ausschlag des Instrumentes vergrößert sich.

Durch die hohen in der Katodenleitung liegenden Gegenkopplungswiderstände ist die Erzeugung der Gittervorspannungen etwas ungewöhnlich. Die Katoden müssen eine zusätzliche negative Hilfsspannung erhalten, die man einem zusätzlichen

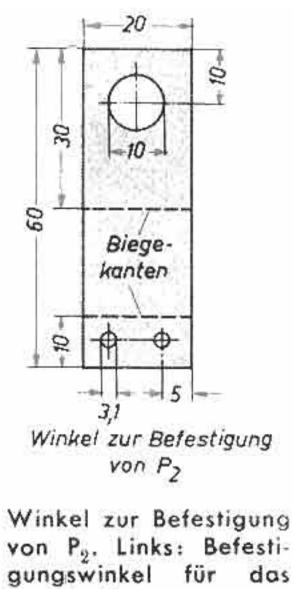
210

Chassisansicht der vertikalen Montageplatte

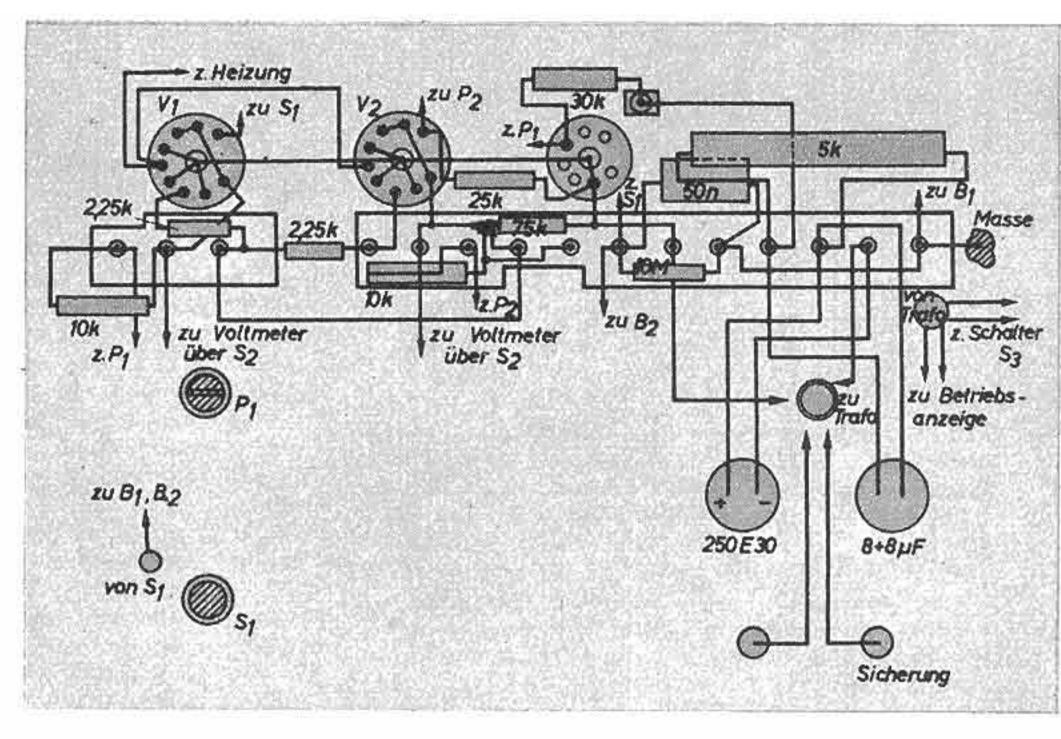

Stromversorgungsteil entnehmen könnte. Zweckmäßiger ist es, den Netzteil nicht wie üblich bei —A mit Masse zu verbinden, sondern über einen Spannungsteiler so zu legen, daß positive und negative Spannungen gegen Masse entnommen werden können. Der Netzteil unseres Röhrenvoltmeters arbeitet nach diesem Prinzip. Der Schleifer des Potentiometers P_2 hat Massepotential. Die Kompensationsröhre V2 erhält ihre Vorspannung durch einen festen Spannungsteiler. Der Arbeitspunkt der Meßröhre V, kann durch P2 leicht geändert werden, um etwaige Unsymmetrien auszugleichen. Diesem Zweck dient ferner das in der Anodenspannungsleitung angeordnete Potentiometer P_1 , das Unsymmetrien der beiden Arbeitswiderstände ausgleicht und damit die Nullkorrektur bewirkt.

Im Netzteil ist ein Stabilisator (85 A 2) angeordnet, der die Anodenspannung herabsetzt und konstant hält. Die wirksame Anodenspannung an den Röhren ist nur 40 V. Gitterströme treten daher praktisch nicht auf. Die Siebung ist sehr sorgfältig durchgeführt. Messungen können daher auch an sehr empfindlichen Meßobjekten, die nicht geerdet sind, vorgenommen werden.

Der Spannungsteiler besteht aus hochwertigen Meßwiderständen. Spannungen sind in folgenden Stufen zu messen: 1 V, 3 V, 10 V, 30 V, 100 V, 300 V bzw. 2 V, 6 V, 20 V, 60 V, 200 V, 600 V, Obwohl sich mit den Bereichen der wirksame Gitterableitwiderstand von 33 k Ω auf 10 M Ω erhöht, konnte durch die genannten Maßnahmen erreicht werden, daß sich der Nullpunkt des Instrumentes nicht ändert. Die Verbindung mit Masse liegt nicht wie üblich am Fußpunkt des Spannungsteilers, sondern erfolgt über die RC-Kombination 10 M Ω und 50 nF. Dadurch wird die ganze Meßanordnung erdpotentialfrei. Der Eingangswiderstand an Buchse 2 ist 10 M Ω . Beim Anschluß an die außen geerdete Buchse 1 beachte man, daß der 10-M Ω -Widerstand in Serie


Liste der Spezialteile

Meßinstrument 0 ... 100 uA (Gossen "Pg 1") Netztransformator (Engel "M 55/20, N 2") Doppelelektroiytkondensator 2×8 uF, 350/385 V (Schaleco) Selengleichrichter (AEG, SAF, S&H) 2 Potentiometer, $1 k\Omega$, linear (Preh) Keramischer Wellenschalter, 1 Schaltebene, 2×6 Kontakte (Mayr) 2 Kippschalter (Lumberg) 2 HF-Buchsen (Schützinger "Nr. 60") 2 HF-Büschelstecker (Schützinger "Nr. 50") Sicherungsleiste (Zimmermann) Gehause $205\times110\times145$ mm (P. Leistner) 2 Röhren EF 804 (Telefunken) Stabilisator 85 A 2 (Valvo) Germanium-Diode DS 62 (SAF)

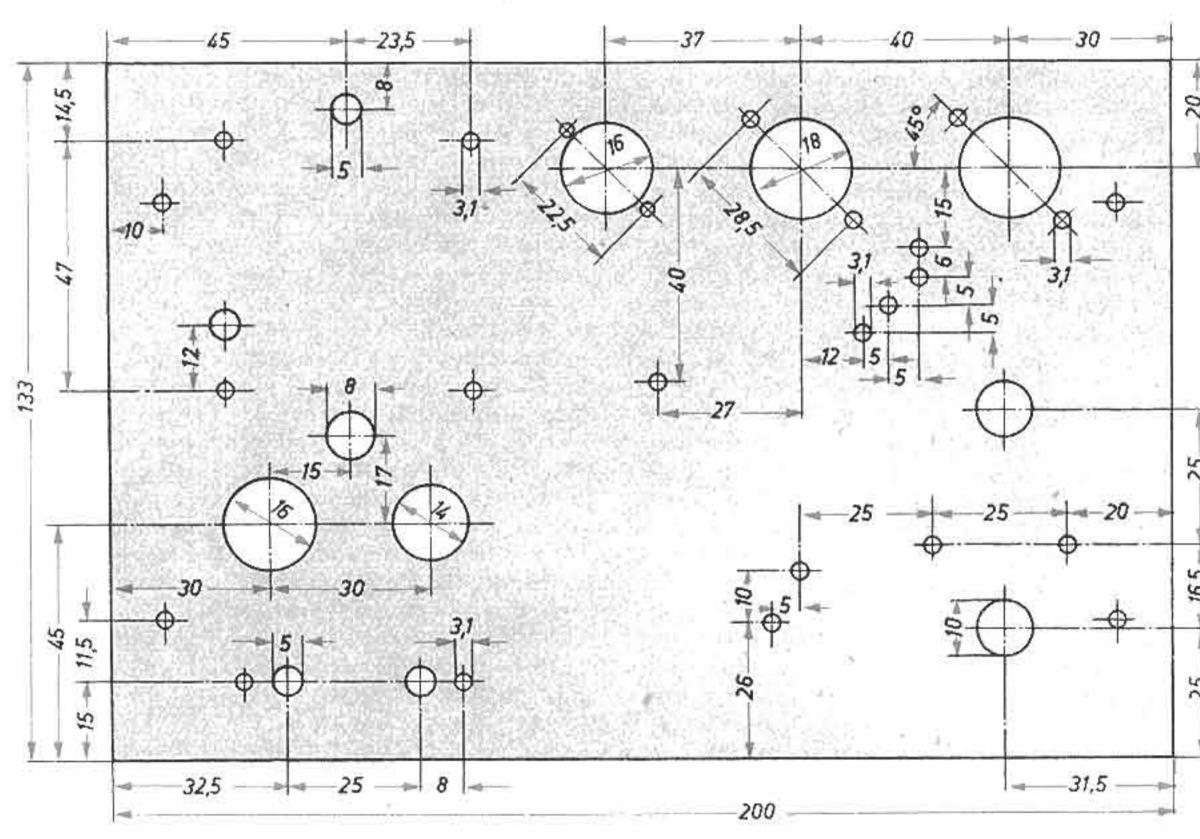

zum Spannungsteiler liegt und daher die Empfindlichkeit auf die Hälfte absinkt. Der Eingangswiderstand steigt jedoch auf 20 M Ω . Der parallel zum Eingang angeordnete Kondensator (10 nF) verhindert das Eindringen ungewollter Wechselspannungen, die Fehlmessungen verursachen könnten.

Der Wechselspannungs-Tastkopf benutzt an Stelle einer Röhre eine Kristalldiode (DS 62). Da die Kristalldiode keinen Anlaufstrom zieht, ist eine Anlaufstrom-

von P2. Links: Befestigungswinkel für das Meßinstrument

Verdrahtungsplan ->

Hinweise für den praktischen Aufbau


Bei der Auswahl der beiden Röhren EF 804 ist es zweckmäßig, zwei Systeme zu wählen, die ähnlich wie Gegentaktendröhren gleiche Werte aufweisen. Der Stabilisator läßt sich auch durch einen ohmschen Spannungsteiler ersetzen. Es genügt u. U., an Stelle des Stabilisators einen Widerstand von 20 kΩ anzuordnen. Die in den Katoden- und Anodenleitungen liegenden Widerstände sind ausreichend zu dimensionieren; statt der 1/4-Watt-Widerstände sind 1/2-Watt-Typen von Vorteil. Diese Maßnahme soll die Änderung der Widerstandswerte durch natürliche Alterung verhindern. Die beiden Katoden- und die Anodenwiderstände sind in ihrem Absolutwert unkritisch, jedoch soll jedes Widerstandspaar die

gleichen Werte aufweisen, um die Brükkenbedingungen genau einzuhalten. Die Spannungsteilerwiderstände müssen ausgesuchte Qualitätswiderstände sein (z. B. Siemens-Meßwiderstände, 0,5 % Toleranz) und sind so vorsichtig wie Kristalldioden einzulöten, da eine zu starke Erwärmung des Widerstandskörpers eine Widerstandsänderung zur Folge hat. Das gleiche gilt für den gegen Masse liegenden 10-M Ω -Widerstand. Der parallel zum Spannungsteiler angeordnete Kondensator (10 nF) muß höchste Güte haben; sein Gleichstromwiderstand muß größer als $10^9 \Omega$ sein, wenn man von einer Genauigkeit von 1 % ausgeht. Als Röhrenfassungen bewährten sich keramische Ausführungen. Für Durchführungen hochohmiger Leitungen sind keramische Transitobuchsen (Dralowid) zweckmäßig.

Wie die Fotos und Skizzen zeigen, ist das Röhrenvoltmeter in einem der bewährten Minitest-Gehäuse (P. Leistner) untergebracht. Der Netzteil ist mit Zwischenlagen aus Pertinax vom Chassis isoliert. Die Verdrahtung erfolgt mit Hilfe von Lötösenleisten. Es sei noch darauf aufmerksam gemacht, daß die Röhrenfassungen für die beiden EF 804 unterhalb der Montageplatte angeordnet sind. Die Meßwiderstände sollen unmittelbar an den Umschalter gelötet werden. Sämtliche Lötstellen sind unter Verwendung von Kolophonium zu löten und dann mit Tri (Trichloräthylen) zu reinigen.

An der Frontplatte befinden sich das Meßinstrument (Gossen Pg 1, 0 ... 100 μA), die beiden Eingangsbuchsen (B_1, B_2) , von denen B_1 isoliert angebracht ist, sowie Netzschalter (S_2) , Polwendeschalter (S_2) und die Kontrollampe.

Bei der Einstellung des Röhrenvoltmeters bringt man P_1 (1 k Ω linear) auf Mittelstellung. Dann regelt man P_s (1 k Ω , linear) so lange, bis der Zeiger des Meßinstrumentes genau auf Null steht. Die mechanische Arretierung muß übereinstimmen, wenn das Röhrenvoltmeter abgeschaltet ist. Hat man eine genau definierte Spannung, die dem Endausschlag eines Bereiches entspricht (z. B. 1 V. 3 V usw.), dann ist es leicht möglich, durch wechselseitiges Verändern von P2 bzw. P_1 die Empfindlichkeit so einzustellen, daß der Endausschlag genau auf das Skalenende zu liegen kommt. Ist P. eingeregelt, so kann die Einstellung mit Lack festgelegt werden, während der Nullpunkt von P_1 von Zeit zu Zeit leicht korrigiert wird. Eine Neueichung der Originalskala des Meßinstrumentes ist nicht erforderlich. Die Gradeinteilung (0...100) wird je nach Meßbereich entsprechend vervielfacht.

Maßskizze für die Montageplatte

Kompensation unnötig. Große Vorteile bietet die Kristalldiode im UKW-Gebiet. Der Hochspannungstastkopf enthält eine Widerstandskombination mit einem Gesamtwiderstand von 1000 M Ω . In Verbindung mit dem Eingangswiderstand wird die Spannung nochmals um den Faktor 100 geteilt. Damit wäre theoretisch eine Gleichspannungsmessung bis zu 60 kV möglich. Da aber die für diese Spannungen erforderliche Isolation zu einem unförmigen Tastkopf führt, begnügt man sich mit einem Maximalmeßbereich von 15...25 kV. In der Praxis treten selten höhere Spannungen auf.

Rückansicht der abgenommenen Frontplatte mit Befestigungswinkel für das Meßinstrument


Unbeachtet von der Menge (gewissermaßen am Rande der Ereignisse) findet der Praktiker bei einer Generalschau, wie sie die Funkausstellung darstellte, eine Menge von Neuerungen an Instrumenten und Geräten, die geeignet sind, ihm den Kundendienst und die Arbeit in der Werkstatt zu erleichtern. Viele Geräte wurden schon in der FUNK-TECHNIK besprochen1). Die nachstehenden Hinweise beziehen sich in erster Linie auf für die Instandsetzungswerkstatt und für den Fernsehempfänger-Service bestimmte Neuentwicklungen.

Für die Rundfunk-Reparaturwerkstatt

Philips zeigte beispielsweise das Universal-Meßinstrument "P 811" für Spannungs-, Strom- und Widerstandsmessungen mit 24 Bereichen (Abb. 1). In je fünf Bereichen werden Gleich- und Wechselspannungen von 3 ... 1200 V gemessen, und zwar bei einem Innenwiderstand von 20 000 Q/V für Gleichspannung und 1666 12/V für Wechselspannungen. Daneben sind drei Widerstandsmeßbereiche vorhanden für 0...10 M.Q. Das Instrument enthält zwei Trockenbatterien von 1,5 V und 22,5 V normaler Ausführung. Die Umschaltung auf die verschiedenen Verwendungsarten und Bereiche erfolgt durch zwei Knöpfe. Dadurch ist es möglich, daß zwei ständig benutzte Anschlußbuchsen vorhanden sind und ein Umstecken der Meßschnüre überflüssig wird. Die Genauigkeit der Spannungsund Strommessungen liegt zwischen 2 und 3,5 %.

1) FUNK-TECHNIK, Bd. 7 [1952], H. 18, S. 482.

Dr. A. RENARDY

Geräte für den

Mit Ausnahme der beiden höchsten Spannungsbereiche (0 ... 300 V und 0 ... 1200 V, für die 40...5000 Hz gelten) geht der Frequenzbereich von 40 Hz... 10 kHz. Das Meßwerk zeigt bei 50 "A Vollausschlag und hat bei Gleichstrommessungen einen Spannungsabfall von 500 mV, bei Wechselstrommessungen einen solchen von 1,5 V. Bei Wechselspannungsmessungen ergeben 600 "A Vollausschlag.

Ein äußerst nützliches Hilfsmittel für Entwurf und Reparatur ist der neue Grundig-Resonanzmesser. Wie die Schaltung nach Abb. 3 erkennen läßt, handelt es sich um eine Triode in Schwingschaltung durch Elektronenkopplung. Ein Umschalter

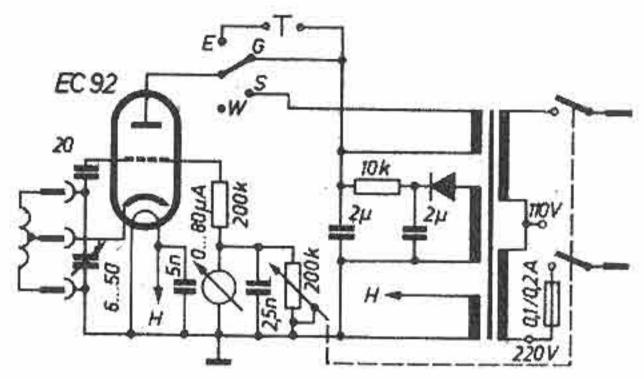
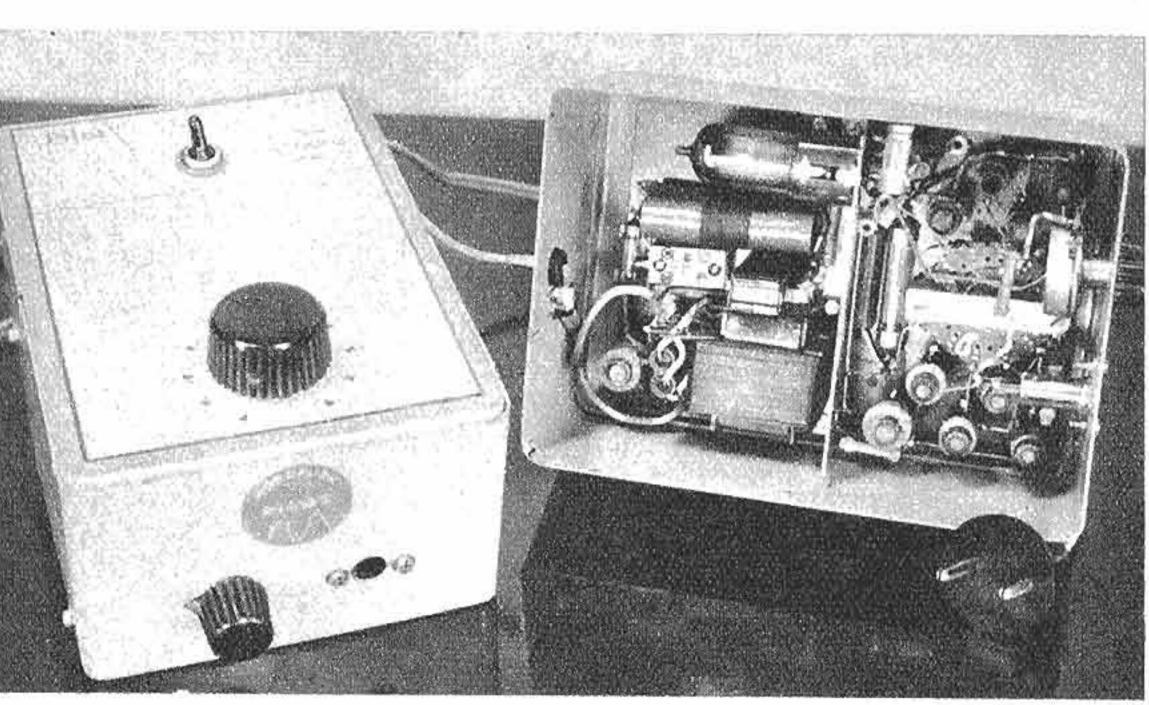


Abb. 3. Schaltung des Grundig-Resonanzmessers


gestattet vier Betriebsarten. In Stellung E ist das Gerät ein Rückkopplungsaudion, das mit dem Kopfhörer abgehört wird und zur Signalverfolgung dient. Hierzu wird die Spule des HF-Kreises dem Feld der Spulen im Empfänger genähert. In Stellung G arbeitet der Resonanzmesser als Grid-Dip-Meter, d. h. als schwingende Stufe, deren Gitterstrom vom Mikroamperemeter angezeigt wird. Entzieht ein Kreis, dessen Resonanzfrequenz bestimmt werden soll, dem schwingenden Kreis des Meßgerätes Energie, so steigt der Gitterstrom an und verursacht einen Ausschlag des Mikroamperemeters, dessen Zeiger zuvor mittels des parallelliegenden, veränderbaren Widerstandes auf den Nullpunkt gestellt wurde. In Stellung S wird die von der Spule des Resonanzkreises abgegebene Frequenz durch eine Wechselspannungsüberlagerung zur Anodenspannung mit 50 Hz moduliert, so daß ein Prüfsender vorliegt, mit dessen Hilfe ein moduliertes Signal in den Spulen des zu untersuchenden Gerätes induziert werden kann. Es ist also Signalzuführung möglich. Schließlich ergibt sich in Stellung W ein Absorptionsfrequenzmesser, mit dem die Frequenz schwingender Kreise bestimmt werden kann. Bei Annäherung entzieht der Kreis des Meßgeräts dem schwingenden Kreis Energie und richtet die Hochfrequenz gleich, wobei Katode und Steuergitter der Triode als Diode wirken; in diesem Falle zeigt das Mikroamperemeter den vom Steuergitter abfließenden Gleichstrom an.

Der Frequenzbereich des Resonanzmessers geht von 400 kHz bis 240 MHz, bestreicht also alle Abb. 2. Grundig-Resonanzmesser (Grid-Dip-Meter) Frequenzen, bei denen es schwierig ist, die Re-

sonanzfrequenz von Kreisen schnell und einfach zu bestimmen. Alle Zwischenfrequenzbereiche sind gedehnt: 420 ... 500 kHz, 5 ... 6 MHz, 9,5 ... 11,5 MHz. Die Bereichumschaltung erfolgt durch Aufstecken der jeweils erforderlichen Spule. Das Gerät ist sehr handlich gebaut in der Form eines Griffes, der Einhandbetrieb gestattet.

Für die reine Rundfunkreparatur liefert Nordfunk, Bremen, u. a. zwei ebenso handliche wie nützliche und preiswerte Geräte, den Prüfsender "Pilot" und das Fehlersuchgerät "Spion". Der "Pilot" geht von dem Gedanken aus, daß in der Werkstatt zum Abgleich von Empfängern nur einige wenige Frequenzen unbedingt erforderlich sind, auf Zwischenwerte aber verzichtet werden kann. So ist ein Prüfgenerator mit zehn Festfrequenzen entstanden: 190 kHz, 350 kHz, 468 kHz, 472 kHz, 600 kHz, 1500 kHz, 3,6 MHz, 7,0 MHz, 10,7 MHz, 16 MHz. Im Lang- und Mittelwellenbereich ist je eine Frequenz am Anfang und am Ende des Bandes zum Spulen- bzw. Trimmerabgleich vorhanden. Im Kurzwellenbereich ist außerdem zur Kontrolle des Oszillatorabgleichs eine Frequenz im doppelten Abstand der Zwischenfrequenz gegeben, um einen Fehlabgleich zu vermeiden. Außerdem steht für den UKW-Betrieb die normale Zwischenfrequenz von 10,7 MHz zur Verfügung. Wie die Schaltung des "Pilot" (Abb. 5) erkennen läßt, ist das Triodensystem der Röhre ECH 42 als Colpittsoszillator angeordnet. Durch einen Stufenschalter werden zu einem Festkondensator Spulen verschiedener Größe geschaltet; eine freie Schaltstufe gestattet nötigenfalls eine Erweiterung um eine Frequenz. Die Climmentladeröhre UR 110 wirkt als Tongenerator, der das erste Steuergitter des Hexodensystems beeinflußt, während am zweiten die Oszillatorfrequenz liegt. Am Potentiometer im Anodenkreis der Hexode können die modulierten Frequenzen mit Spannungen zwischen 0,1 und 500 mV abgegriffen werden.

Der Nordiunk-"Spion" (Abb. 6 und 7) ist ein Fehlersuchgerät und besteht aus einem Multivibrator und einer als Spannungsbestimmer geschalteten Glimmentladeröhre ARG 200. Der mit einer Doppeltriode 12 AX 7 bestückte Multivibrator (Rechteckschwinger) liefert ein Frequenzgemisch, das von Tonfrequenzen bis zu einigen Megahertz reicht. In der bekannten Weise wird dieses Signal den verschiedenen Punkten eines fehlerhaften Empfängers zugeführt, um festzustellen, bis zu welcher Stufe er (vom Ausgang her gesehen) funktioniert. Damit die Zwischenfrequenz dabei keine Täuschungen verursachen kann, wird sie aus dem Frequenzgemisch ausgesiebt, wenn der Schalter den auf 468 kHz abgestimmten Resonanzkreis freigibt. Die Glimmentladeröhre gestattet, mit Gleichstrom betrieben, Spannungsmessungen im Rahmen tragbarer Genauigkeit und Widerstandmessungen sowie Isolationsmessungen an Kondensatoren; mit Wechselstrom betrieben, läßt sich auch die Größe von Kondensatoren bestimmen. Beide Geräte, "Pilot" und "Spion", zeichnen sich durch kleine Ausmaße aus, die es gestatten, sie auch außerhalb der Werkstatt zu verwenden.

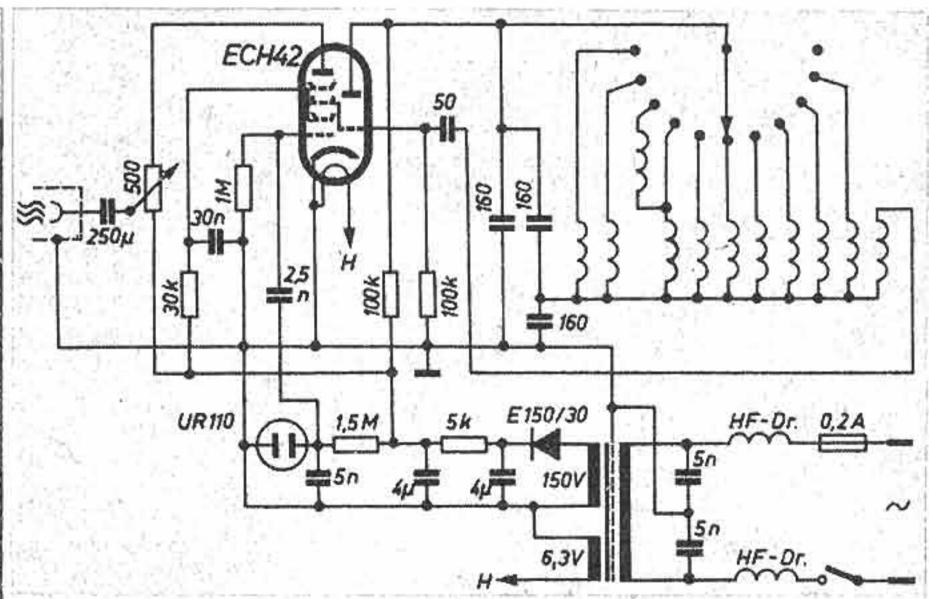


Abb. 4 (links). Außen- und Chassisansicht des Nordfunk-Prüfsenders "Pilot" mit 10 Festfrequenzen. Abb. 5 (oben). Schaltung des "Pilot"

Reparaturpraktiker

Für den Fernsehempfänger-Service

Da die allermeisten Fernsehempfänger in Allstromschaltung laufen, setzen sich in steigendem Maße Trenntransformatoren durch, die das Empfängerchassis während der Reparatur galvanisch vom Netz trennen und gefahrloses Hantieren gestatten; zugleich werden diese Transformatoren zur Regelung der Betriebsspannung auf den vorgeschriebenen Wert benutzt. Sie werden daher als Trennund Regeltransformatoren bezeichnet. Der von Philips herausgebrachte Regel-Trenntransformator, RTT 54" gestattet bei Netzspannungen zwischen 180 und 240 V die Entnahme beliebiger Spannungen zwischen 0 und 300 V bei 1,5 A im Dauerbetrieb und 2 A fünf Minuten lang (Abb. 8).

Der Trenn- und Regeltransformator "TR 3" von E. & F. Engel, Wiesbaden, dessen Schaltung Abb. 9 zeigt, setzt eine Leistung von 300 VA um. In 15 Stufen kann die Sekundärspannung einreguliert werden, so daß Netzschwankungen auszugleichen sind. Eine Anzeigelampe und ein Voltmeter vereinfachen den Betrieb des Transformators.

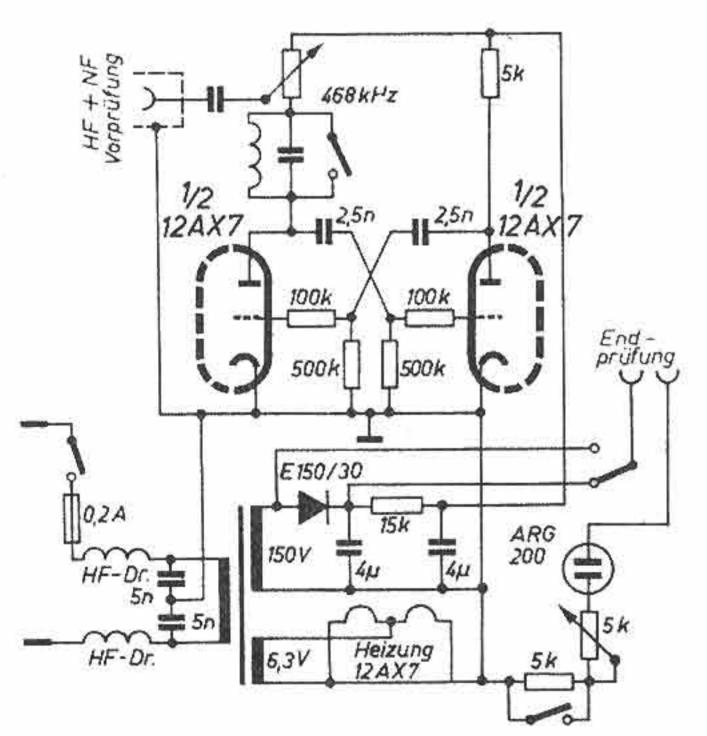


Abb. 6. Schaltung des Nordfunk-"Spion"; Multivibrator und Glimmlampen-Meßgerät

Viele der bekannten Gerätehersteller liefern Wobbel- und Bildmustergeneratoren sowie zweckmäßige Oszillografen.

Unter dem Gesichtspunkt eines erschwinglichen Preises hat Nordmende kürzlich einen Universal-Wobbler und einen Fernseh-Oszillografen geschaffen. Der Universal-Wobbelsender umfaßt die Frequenzbereiche 1 ... 16, 15 ... 39, 39 ... 73, 62 ... 103 und 172 ... 230 MHz, und zwar bei Ausgangsspannungen von maximal 0,2 V im ZF-Bereich und 40 mV in den HF-Bereichen. Der Frequenzhub ist bis 16 MHz stetig regelbar. Ein Frequenzmarkengeber arbeitet in den Bereichen 5 ... 6, 19 ... 27, 33 ... 47, 46 ... 68, 85 ... 112 MHz mit Grundfrequenzen und im Bereich 170 ... 230 MHz mit Harmonischen. Die Frequenzgenauigkeit wird in allen Bereichen durch einen eingebauten Quarz kontrolliert. Die Ablenkspannung für den Oszillografen ist bis 350 V regelbar.

Abb. 8. Regeltrenntransformator "RTT 54" von
Philips. Die Sekundärwicklung besteht aus
einer festen, unschaltbaren Wicklung und aus
einer zweiten Wicklung
mit einer Schleiffläche.
Der Transformator läßt
sich auch in Sparschaltung (Sekundärwicklung
oder in Reihe mit Primärwicklung) verwenden

Abb. 9. Trenn- und Regeltrafo "TR 3" der Firma Engel

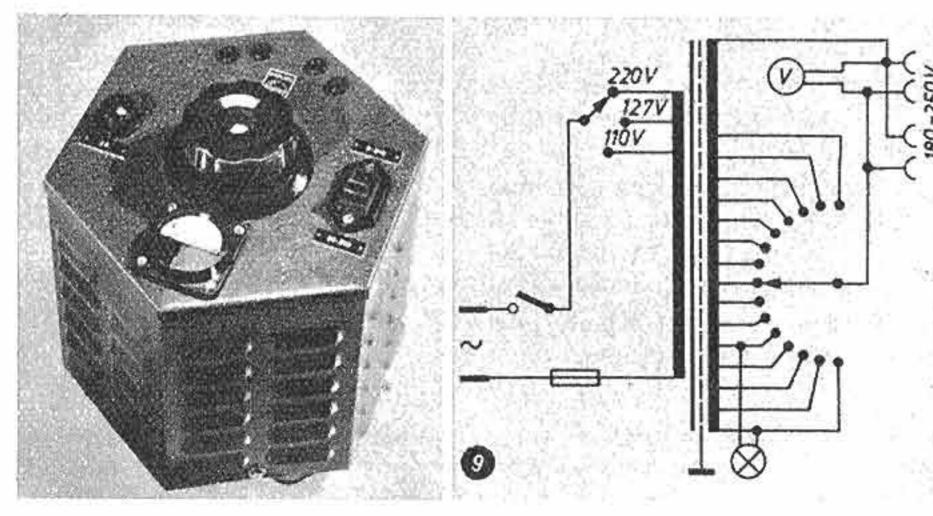


Abb. 7. Außen- und Unteransicht des Fehlersuchgerätes "Spion"

Der zum Wobbelsender gehörige Fernseh-Oszillograf hat äußerlich genau die gleichen Gehäuseabmessungen. Der Kippteil liefert Ablenkfrequenzen von 5 Hz bis 120 kHz. Für 1 cm senkrechter Auslenkung werden etwa 2 mV benötigt. Die Senkrechtverstärkung ist etwa 300fach, 5 Hz bis 4 MHz bei 3 db; bis 7 MHz verwendbar; umschaltbar bis 5000fach.

Telefunken zeigte auf der Ausstellung den Fernseh-Service-Koffer "FM 53-01", der auf alle Kanäle einstellbar ist und sowohl als HF- und NF-Generator wie als Bildmustergenerator betrieben werden kann. Daneben verfügt der Koffer noch über einen Signalverfolger, der zur Fehlersuche (vornehmlich im HF-, ZF- und Videoverstärkerteil) dient. Im Kofferdeckel ist ein Spiegel beigegeben, damit man diesen immer zur Hand hat, um z. B. bei Arbeiten an der Rückenöffnung eines Empfängers den Bildschirm beobachten zu können.

Philips zeigte erstmalig den AM/FM-Meßgenerator "GM 2889" für den Bereich 5 ... 225 MHz (Abb. 10). Das Gerät gestattet in Verbindung mit einem Oszillograf den Abgleich bzw. die visuelle Untersuchung der Filterkurven von Fernsehgeräten, Diskriminatorkurven von UKW-Empfängern sowie auch Messungen an Impedanzen, Kabeln und Antennensystemen. Bei einer Modulationsfrequenz von 50 Hz kann der Frequenzhub zwischen 0 und 15 MHz bzw. zwischen 0 und 1,5 MHz und bei einer Modulationsfrequenz von 400 Hz zwischen 0 und 250 kHz fortlaufend geregelt werden.

Wohl das einfachste und zugleich handlichste Gerät für den Fernseh-Service, das in Düsseldorf ausgestellt war, ist der Prüfbildgenerator PBG 510 von Reitz (Abb. 11). Er bestreicht lückenlos den Bereich 170 ... 230 MHz und gibt neben waagerechten oder senkrechten Balkenmustern einen modulierten Tonträger ab. Durch die Wahl verschiedener Stecker können einem Fernsehempfänger die Signale in verschiedener Stärke zugeführt werden. Das Gerät ist hauptsächlich für Arbeiten im Hause des Kunden gedacht, und zwar für Einstellarbeiten in Zeiten, in denen der Fernsehsender nicht arbeilet. Entsprechend dieser Aufgabe ist das Gehäuse so klein, daß es nur einen Teil des Raumes einer Aktentasche einnimmt. Die Röhrenbestückung ist ECC 81, ECC 81, ECC 82.

Der Service-Sender "Teletest" von Klein & Hummel (Abb. 12) gibt die Bild- und Tonträger aller elf Fernsehkanäle ab, wobei der Tonträger jeweils mit 800 Hz frequenzmoduliert ist. Im UKW-Kanal (12) werden 89 MHz und 100 MHz mit 800 Hz frequenzmoduliert und 94,5 MHz ummoduliert abgegeben. Schließlich stehen drei ZF-Bereiche zur Verlügung: 16 ... 22 MHz, 22 ... 30 MHz, 30 ... 45 MHz, und zwar mit Bildmodulation oder mit zusätzlichem frequenzmoduliertem Tonträger in ± 5,5 MHz Abstand. Die Intercarrier-Zwischenfrequenz von 5,5 MHz liegt in einem besonderen, gespreizten Bereich 5,2 ... 5,8 MHz (Frequenzen unmoduliert oder mit 800 Hz frequenzmoduliert). In der gleichen Weise steht gespreizt die UKW-FM-Zwischen-

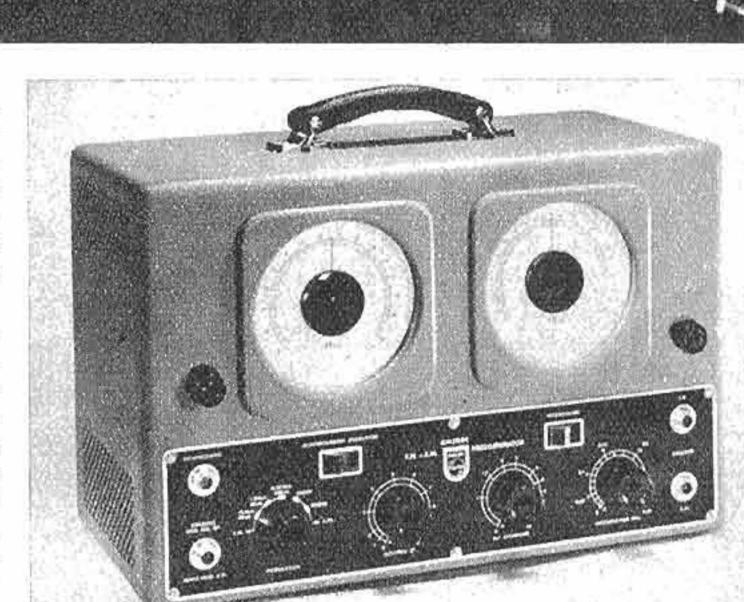


Abb. 10. AM/FM-Meßgenerator "GM 2889" (Philips)

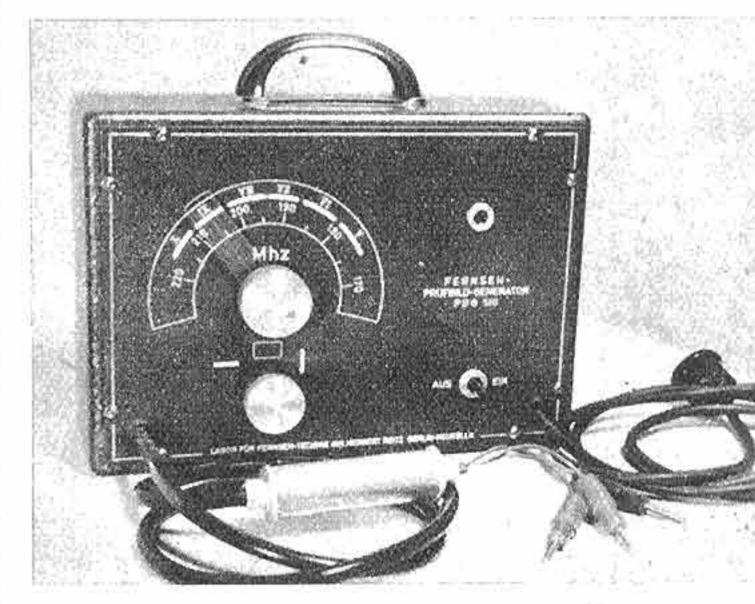


Abb. 11. Fernseh-Prüfbildgenerator von H. Reitz

Abb. 12. Fernseh-Service-Sender "Teletest" (Klein & Hummel)

frequenz von 10,4 ... 11,6 MHz moduliert oder unmoduliert zur Verfügung. Als wesentliche Bedienungsvereinfachung des "Teletest" ist die Handhabung durch eine Reihe bunter Drucktasten anzusehen. Lediglich der Kanalwähler ist ebenso wiebeim Fernsehemplänger als Drehschalter ausgebildet. Bei allen anderen regelmäßig zu wiederholenden Einstellungen brauchen nur Tasten gedrückt zu werden.

Uber die Meß- und Prüfgeräte von Klemt wird in einem der folgenden Hefte in einem gesonderten Beitrag berichtet.

Bestimmungen über den Erwerb von Seefunkzeugnissen

Seefahrt ohne Funk und Funkortung ist heute kaum denkbar. Die deutsche Industrie hat in den letzten Jahren viele verbesserte Funkgeräte für die Seefahrt geschaffen (siehe FUNK-TECHNIK, Bd. 7 [1952], H. 15, S. 399, "Schiffsfunkgeräte aller Typen", und Bd. 8 [1953], H. 5, S. 134, "Schiffsfunkgeräte neuester Konstruktion"). In Westdeutschland liefern u. a. Elac, Hagenuk, Lorenz, Telefunken und Siemens modernste Standard- und Spezialausführungen für Telegrafie, Telefonie, Seenotruf und Navigation. In der DDR pflegt vor allem das Funkwerk Köpenick die Weiterentwicklung auf diesem Gebiet.

Im Aufsatz "Schiffsfunk und Navigation" (FUNK-TECHNIK, Bd. 7 [1952], H. 14, S. 368) wurden Hinweise auf die Organisation des Schiffsfunks gegeben, und in "Mangel an guten Schiffsfunkern" (FUNK-TECHNIK, Bd. 7 [1952], H. 15, S. 400) die Wege zur Erlangung von Seefunkzeugnissen gezeigt. Neue "Bestimmungen über den Erwerb von Seefunkzeugnissen" sind im Amtsblatt des Bundesministers für das Post- und Fernmeldewesen, Ausgabe A, Nr. 107, vom 28. 9. 53, abgedruckt. Die Bestimmungen können gegen eine Gebühr von 0,30 DM vom Verlagspostamt Frankfurt (Main) bezogen werden.

Unterschieden wird zwischen

a) Seefunkzeugnisse für den Telegrafie- und Sprechfunkdienst, und zwar

Seefunkzeugnis 1. Klasse Seefunkzeugnis 2. Klasse Seefunksonderzeugnis

 b) Seefunkzeugnis für den Sprechfunkdienst, und zwar

Allgemeines Seefunksprechzeugnis.

Das "Seefunkzeugnis I. Klasse" berechtigt zur Ausübung des Telegrafie- und Sprechfunkdienstes nach mindestens einjähriger Funkausübung als erster Funker und sonst als zweiter oder weiterer Funker auf deutschen Seefunkstellen, die für Fahrzeuge über 1600 Bruttoregistertonnen in drei Gruppen eingeteilt sind.

Das "Seefunkzeugnis 2. Klasse" läßt in der Gruppe 1 die entsprechende Verwendung als dritter und weiterer Funker, in der Gruppe 2 als zweiter oder weiterer Funker und in der Gruppe 3 jede Verwendung zu.

Das "Seefunksonderzeugnis" berechtigt zur Ausübung des Funkdienstes auf Telegrafie-Seefunkstellen von Seefahrzeugen

TELEFUNKEN —

TELEFUNKEN —

April 1 Ap

Ausbildungsstätten für Seefunker →

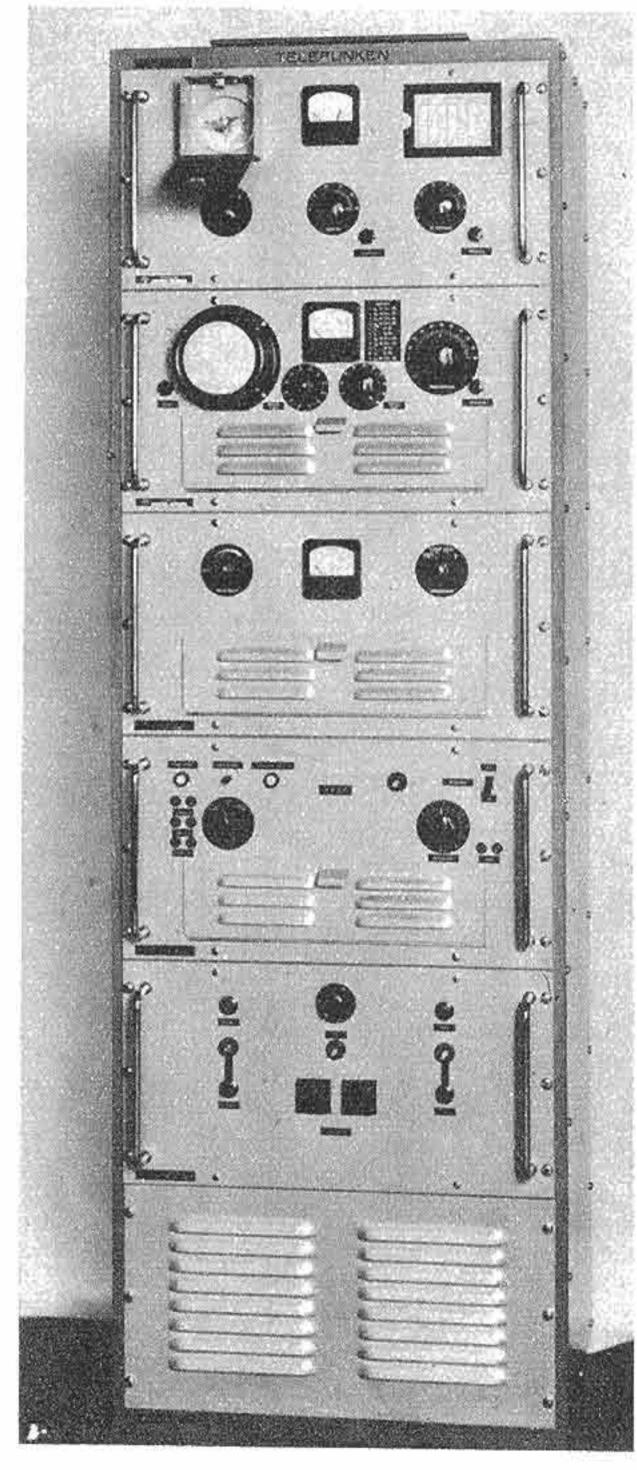
Ausbildungsstätte	Anerkannte Funklehrgänge für	Zuständige Prüfungs-Ober- postdirektion
Seefahrtschule Flensburg	Seefunksonderzeugnis Allg. Seefunksprechzeugnis	} Kiel
Seefahrtschule Hamburg	Seefunkzeugnis 1. Klasse Seefunkzeugnis 2. Klasse Seefunksonderzeugnis Allg. Seefunksprechzeugnis	Hamburg
Seefahrtschule Lübeck	Seefunksonderzeugnis Allg. Seefunksprechzeugnis	Hamburg
Seefahrtschule Bremen	Seefunkzeugnis 1. Klasse Seefunkzeugnis 2. Klasse Seefunksonderzeugnis Allg. Seefunksprechzeugnis	Bremen
Seefahrtschule Bremerhaven	Seefunksonderzeugnis Allg. Seefunksprechzeugnis	Bremen
Seefahrtschule Elsfleth (Weser)	Seefunksonderzeugnis Allg. Seefunksprechzeugnis	Bremen
Seefahrtschule Leer (Ostfriesland)	Seefunksonderzeugnis Allg. Seefunksprechzeugnis	} Bremen

unter 1600 Bruttoregistertonnen und auf Sprech-Seefunkstellen unter 100 W Trägerleistung.

Das "Allgemeine Seefunksprechzeugnis" gilt dagegen nur für Sprech funkdienste unter 100 W modulierter Trägerleistung (bzw. unter 500 W bei sehr automatisierten Geräten).

Voraussetzungen, Ausbildung, Prüfung

Jeder seediensttaugliche Deutsche kann nach Vollendung des 18. Lebensjahres ein Seefunkzeugnis erwerben. Prüfungen werden durch die zuständigen Oberpostdirektionen vorgenommen.


Die Anwärter für das "Seefunksonderzeugnis" und für das "Allgemeine Seefunksprechzeugnis" können sich die erforderlichen beruflichen Fertigkeiten und Kenntnisse auf beliebige Art und Weise aneignen. Eine besondere allgemeine oder berufliche Vorbildung wird nicht gefordert; empfohlen wird jedoch die Teilnahme an anerkannten Funklehrgängen der Seefahrtschulen. Die Prüfungsbedingungen fordern Kenntnis in Morsen und Fernsprechen (bzw. nur Fernsprechen), Gebührenberechnungen, Vorschriften für den Funkdienst und einige grundsätzliche elektrotechnische Kenntnisse sowie die Vertrautheit mit Bedienung und Pflege der Geräte.

Das "Seefunkzeugnis 2. Klasse" setzt eine Ausbildung von 40 Unterrichtswochen an einem anerkannten Funklehrgang einer Seefahrtschule voraus. Als Vorbildung werden weiter verlangt: a) abgeschlossene Mittelschulbildung und zweijährige praktische Tätigkeit im Elektrohandwerk (vorzugsweise Rundfunkmechanik) oder b) abgeschlossene Volksschulbildung und abgeschlossene Lehre im Elektrohandwerk (vorzugsweise Rundfunkmechanik) sowie die bestandene Aufnahmeprüfung für den Funklehrgang einer Seefahrtschule in Deutsch, Englisch, Mathematik, Physik und Erdkunde.

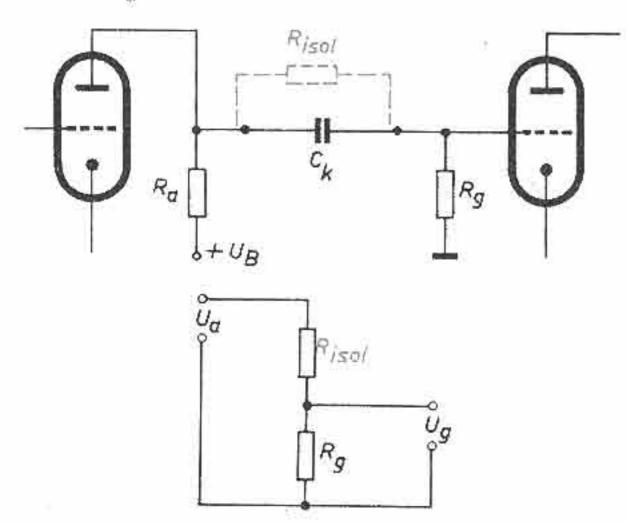
Inhaber des Befähigungszeugnisses A 5 als Seesteuermann auf großer Fahrt und Inhaber des "Seefunkzeugnisses", die mindestens eine sechsjährige Tätigkeit im Funkdienst nachweisen können, benötigen für die Zulassung zur Prüfung für das "Seefunkzeugnis 2. Klasse" nur eine Spezialausbildung im Funklehrgang einer Seefahrtschule von mindestens 20 Wochen.

Die Prüfungsbedingungen für das "Seefunkzeugnis 2. Klasse" sind in allen Fächern umfassender als für das "Seefunksonderzeugnis" und das "Allgemeine Seefunksprechzeugnis". Das "Seefunkzeugnis 1. Klasse" kann nur von Funkern mit einem gültigen "Seefunkzeugnis

Kurzwellen-Verkehrsempfänger von Telefunken mit neuentwickeltem Fernschreib - Tastgerät

80-W-Funkfeuersender "SSt 301 Lw 0,07/1" für Funkfeuer auf Schiffen oder Landstationen zur Navigation von Schiffen (Telefunken-Neuentwicklung)

2. Klasse" erworben werden, die nachweislich mindestens drei Jahre lang hauptberuflich den Funkdienst auf Seefahrzeugen ausgeübt haben (davon mindestens 18 Monate Große Fahrt). Zum Abschluß der Vorbereitung auf die Prüfung ist ein mindestens 14wöchiger anerkannter Funklehrgang an einer Seefahrtschule vorgeschrieben. Die Forderungen an die beruflichen Fertigkeiten, Verwaltungskenntnisse und technischen Kenntnisse sind größer als für das Seefunkzeugnis 2. Klasse. Die Bestimmungen enthalten ausführliche Prüfungsbedingungen.


Dieses Mal ...

Genügt der Isolationswert des Kopplungskondensators?

Bitte schätzen Sie einmal, wie hoch der Isolationswiderstand des Kopplungskondensators in dem Schaltbild sein muß (Abb. 44). Meinen Sie, daß 100 Millionen Ohm genügen werden? Wir wollen es nachrechnen: Der Isolationswiderstand bildet mit dem Gitterableitwiderstand der angeschlossenen Röhre einen Spannungsteiler für die Anodengleichspannung der Vorröhre. Die am Spannungsteiler liegende Gesamtspannung ist die Spannung U_a . Am Gitter liegt nach Abb. 45 eine positive Teilspannung, deren Größe sich aus der Spannungsteilerformel ergibt (s. FT-AUFGABEN 0).

$$\frac{U_{\mathsf{g}}}{U_{\mathsf{a}}} = \frac{R_{\mathsf{g}}}{R_{\mathsf{isol}} + R_{\mathsf{g}}} \; ; \; U_{\mathsf{g}} = \frac{U_{\mathsf{a}} \cdot R_{\mathsf{g}}}{R_{\mathsf{isol}} + R_{\mathsf{g}}} \tag{69}$$

Nehmen wir einmal an, daß die Anodenspannung $U_{\rm a}$ der Vorröhre rd. 80 V ist und daß

der Gitterableitwiderstand rd, 1,5 M Ω hat, und setzen wir weiter voraus, daß der Isolationswert den oben geschätzten Wert von 100 M Ω hat, dann ist

$$U_{\rm g} = \frac{80 \cdot 1,5}{100 + 1,5} = \frac{120}{101,5} = 1,18 \text{ V}$$

Das würde bedeuten, daß ein positiver Spannungsanteil von über 1 V über den Kopplungskondensator auf das Gitter der angeschlossenen Röhre kommt. Das ist natürlich zuviel bei einer negativen Vorspannung in der Größenordnung von wenigen Volt,

Ein zehntel Volt könnte man allenfalls zulassen. Daraus ergibt sich als grober Richtwert, daß der Isolationswiderstand rund tausendmal so groß sein muß wie der Gitterableitwiderstand.

Nicht nur der Kopplungskondensator einer NF-Stufe ist kritisch, sondern auch ein Kondensator im Gegenkopplungskanal zwischen Anode und Gitter oder jeder andere Kondensator, der eine positive Anodenspannung vom Steuergitter fernhalten soll, z.B. ein Gitterkondensator in einer Dreipunkt-Oszillatorschaltung.

Die Auswirkung eines Kopplungskondensators mit Feinschluß ist verschieden, und zwar je nach Art der Erzeugung der Gittervorspannung. Am stärksten ist die Beeinflussung der Betriebswerte der Röhre bei fester Gittervorspannung. Am geringsten bleibt die Wirkung bei automatisch erzeugter Gittervorspannung. Auf jeden Fall wird aber die Röhre unrichtig arbeiten, verzerren oder überlastet werden.

Häufig sind taube Endröhren ausgetauscht worden, ohne die eigentliche Ursache des Fehlers zu erkennen. Nach kurzer Zeit war dann auch die neue Röhre wieder in ihrer Emissionsfähigkeit erschöpft. Ein Auswechseln des Kopplungskondensators hätte die Röhre erhalten können.

Da nicht in jeder Werkstatt ein Ohmmetei für so hohe Widerstandswerte zur Verfügung steht, wird am besten im Gerät geprüft. Beim Ablöten des Kopplungskondensators von der Anode der Vorröhre darf sich der Anodenstrom der folgenden Röhre nicht verringern.

Frage 60

Welcher positive Spannungsanteil liegt am Gitter, wenn die Anodenspannung der Vorröhre 110 V, der Gitterableitwiderstand 0,8 M Ω und der Isolationswert des Kopplungskondensator 60 M Ω sind?

Antwort 60

Nach dem Richtwert $(1000 \times R_g)$ kann von vornherein gesagt werden, daß der Isolationswert zu gering ist. Er ist hier nur etwa das Hundertfache des Ableitwiderstandes.

$$U_{\rm g} = \frac{110 \cdot 0.8}{60 + 0.8} = \frac{88}{60.8} = 1.45 \text{ V}$$

Frage 61

Welchen Isolationswert hat der Kopplungskondensator, wenn der positive Spannungsanteil am Gitter 0,7 V ist, und zwar bei einer Anodenspannung von 80 V an der Vorröhre und einem Gitterableitwiderstand von 1,5 M Ω ?

Antwort 61

$$rac{R_{
m isol} + R_{
m g}}{R_{
m g}} = rac{U_{
m a}}{U_{
m g}}$$
 $R_{
m isol} = rac{R_{
m g} \cdot U_{
m a}}{U_{
m g}} - R_{
m g}$
 $= rac{1,5 \cdot 80}{0.7} - 1.2 = rac{120}{0.7} - 1.2$
 $= 170.8 \ {
m M} \Omega$

Frage 62

Wie hoch muß der Isolationswert im Gegenkopplungszweig gefordert werden, wenn bei 220 V Anodenspannung nur 0,1 V positiver Spannungsanteil am Gitterableitwiderstand von 1,5 M Ω auftreten dürfen?

Antwort 62

$$egin{align} R_{
m isol} &= rac{R_{
m g} \cdot U_{
m g}}{U_{
m g}} - R_{
m g} = rac{1,5 \cdot 220}{0,1} & 1,5 \ &= rac{330}{0,1} - 1,5 = 3300 - 1,5 pprox 3300 \, {
m M}. \Omega \ \end{array}$$

... das nächste Mal:

Reicht die Siebkette aus?

Von Sendern und Frequenzen

Neves Studio der Sendestelle Heidelberg-Mannheim

Die Sendestelle Heidelberg-Mannheim des Süddeutschen Rundfunks konnte einen neuen Sendekomplex einweihen. Die Regie die u.a. ein
Mischpult mit sieben Mischmöglichkeiten, drei
Magnetophon-Abspieltruhen und LautsprecherWahlschalter für vier Empfangsmöglichkeiten enthält, ist durch ein Fenster aus zwei starken Glasscheiben mit dem nach modernsten Gesichtspunkten ausgestatteten Studio verbunden.

Fernsehbeauftragter des Süddeutschen Rundfunks

Zum Fernsehbeauftragten des Süddeutschen Rundfunks wurde Herr Dr. Helmut Jedele berufen, der seit 1945 am Süddeutschen Rundfunk tätig ist und vor allem als Regisseur verschiedener experimenteller Hörspiele bekannt wurde.

Fernseh-Produktionschef des Südwestfunks

Herr Kurt Hinzmann, langjähriger leitender Mitarbeiter des deutschen Vorkriegs-Fernsehens in Berlin und nach 1947 auch in Paris tätig, wurde vom Intendanten des Südwestfunks, Herrn Prof. Friedrich Bischoff, ab 1. Dezember 1953 als Produktionschef der Fernsehabteilung verpflichtet.

Neuer Vorsitzender der Arbeitsgemeinschaft

Die Geschäftsführung der Arbeitsgemeinschaft der öffentlich-rechtlichen Rundfunkanstalten der Bundesrepublik Deutschland ging mit Wirkung vom 1. Oktober 1953 vom Südwestfunk auf den Bayerischen Rundfunk über. Als Nachfolger von Intendant Prof. Friedrich Bischof wird nunmehr Intendant Rudolf von Scholtz als geschäftsführender Vorsitzender tätig sein.

Deutsch-französische Fernseh-Zusammenarbeit

Führende Persönlichkeiten des französischen und deutschen Fernsehens arbeiteten kürzlich in Paris den Entwurf eines Abkommens für eine enge französisch-deutsche Zusammenarbeit auf dem Gebiete des Fernsehens aus, das von den zuständigen Gremien demnächst ratifiziert werden soll. Die französische Delegation bei diesen Verhandlungen wurde von dem Generaldirektor des französischen Rundfunks, Herrn Porché, geleitet. An der Spitze der deutschen Gruppe stand Herr Intendant E. Beckmann. Man rechnet in Fachkreisen damit, daß die notwendigen technischen Voraussetzungen für eine direkte Fernsehverbindung zwischen Frankreich und Deutschland zu Beginn des kommenden Jahres geschaffen werden können.

Der umstrittene Fernseh-Werbefunk

Im Verwaltungsrat des NWDR sind die Auffassungen über die etwaige Einführung eines Fernseh-Werbefunks sehr geteilt. Man wendet ein,
daß der NWDR seine Position bei der zu erwartenden Gesetzgebung auf dem Gebiete des
Rundfunks und Fernsehens durch das Werbefernsehen nur erschweren würde. Ferner könne man
die finanzrechtliche Situation noch nicht überblicken. Es wird darauf hingewiesen, daß man
die Belastung durch Körperschaftssteuer auf keinen Fall gegen einen nicht sehr bedeutenden
finanziellen Vorteil eintauschen dürfe.

Gegen die Einführung des Werbefernsehens wandten sich der Zeitschriften-Verlegerverband sowie der Gesamtverband der deutschen Zeitungsverleger.

Haftpflichtversicherung des Südwestfunks

Auch der Südwestfunk schloß mit Wirkung vom 1. Juli 1953 eine Haftpflichtversicherung für Personen- und Sachschäden ab. Der Versicherungsschutz erstreckt sich auf gesetzliche Haftpflicht, die den Teilnehmern aus dem Besitz und dem Betrieb von Rundfunkempfangseinrichtungen einschließlich Hoch- und Außenantennen erwachsen sollte. Die Ersatzleistungen betragen bis zu 200 000 DM für Personen- und 10 000 DM für Sachschäden.

GEBRÜDER STEIDINGER - ST. GEORGEN - SCHWARZWALD

Auslandsberichte

Bei den Funkamateuren in Australien

> VK 2 AOU ex DL 1 EZ

Zur Zeit hören die Funkamateure von DL und VK nicht viel voneinander, da die Übertragungsbedingungen sehr unter dem jetzigen Mangel an Sonnenaktivität zu leiden haben; das wirkt sich bei der großen Entfernung besonders aus. Im letzten Herbst hat es noch ganz gut auf 20 m Wellenlänge geklappt, wenn man in DL die Mittagspause zu einem QSO benutzen konnte. So mag diese kurze Schilderung der hiesigen Tätigkeit der Funkamateure angebracht sein.

Es braucht nicht erst betont zu werden, daß der OM in VK überall sehr freundlich aufgenommen wird und überall Hilfsbereitschaft vorfinden wird (wie man es auch sonst unter KW-hams gewöhnt ist), denn der Australier ist an sich sehr freundlich und leicht zugänglich. Überall wird man mit dem Vornamen angeredet; Standesunterschiede werden nicht gemacht, wie es ja auch QSO-Brauch ist. Die technische Ausgestaltung der Stationen ist hier ebenso verschieden, wie das bei den DL's ist. Man findet KW-Geräte in einer Garagenecke so, daß man nicht recht weiß, wo alte Autoteile und Gartengeräte aufhören und die HF-Technik beginnt. Das Logbuch besteht gelegentlich aus Schmierzetteln, und die letzte QSL wurde vor drei Jahren abgeschickt. Bei der jährlich einmal durchgeführten Kontrolle durch einen Postbeamten, der selbst auch OM ist und die Sache kennt, wird der Fall zu Protokoll genommen und der OP ermahnt. Dann gibt es die große Zahl derjenigen, die sich technisch so gut einrichten, wie es der Geldbeutel erlaubt und die Geräte und Teile verfügbar sind. Doch auch Spitzenreiter sind nicht selten, die sich wirklich eine so feine Station schufen, daß man sich nicht über die QSO-Erfolge zu wundern braucht. Es sind auch manche old timer von 1923 dabei, die sich nun auf die Pensionierung freuen, um endlich einmal ham von Beruf sein zu können.

Das durchschnittliche Grundstück in Sydney mißt z.B. 15×50 m; der kleine Vorgarten, das Haus, die Garage und der Garten teilen sich in diesen Raum. Hier ist daher kein Platz für Langdrahtantennen, und selbst die Zeppelin antenne ist nicht immer leicht unterzubringen. So findet man oft alle Arten von Masten und auch eine ganze Reihe stattlicher Antennentürme mit einem Zwei- oder Drei-Element-Beam. Mancher Mast steht leer oder der 10-m-Beam ist eingerostet, seitdem das 10-m-Band hier immer mehr unbrauchbar wurde. Nicht jeder nahm die Mühe auf sich bzw. hatte den Platz dafür oder vertraute den Gesetzen der Wellenausbreitung so, daß er sich für das 14-mund 20-m-Band entsprechende Antennen aufbaute. Mancher halb verstimmte BC 348 oder AR 8 tat es damals mit den S9-plus-plus-Signalen aus aller Welt, doch jetzt braucht man bessere Empfänger, um sich noch bei dem Rennen zwischen Rauschen und absinkendem Signal halten zu können. Deshalb gab es mancher so lange auf, bis die starken Signale wiederkommen; das dürfte aber noch drei Jahre dauern. Andere konzentrierten inzwischen ihre Arbeit auf UKW; dort sind Funkbänder noch reichlich verfügbar. Das 1,85-MHz-Band steht für Notfunk zur Verfügung, während die 3,5-, 7-, 14-, 21- und 28-MHz-Bänder hier ebenso wie in DL benutzt werden können. Es gibt aber noch ein 11-m- und 6-m-Band. Es folgen dann acht UKW-Bänder zwischen 144 und 30 000 MHz. Das 2-m-Band ist recht gut besetzt, und besondere Arbeitsgruppen sind hier sehr eifrig am Werk. So gelang schon VK2-ZL auf 2 m. SSB wird durch einige wenige Stationen vertreten, und Amateur-Fernsehen wird immerhin geplant. Die Standard-Senderbestückung ist 2×807 im PA und 2×807 im AB2-Modulator. Durch DL's, HB9's sowie VK's und andere Ex-Kontinentler sind jedoch auch die LS 50 und RL 12 P 2000 bekannt.

Der VK-OM hat es trotz der 40-Stunden-Woche nicht leicht, einigermaßen Zeit für sein Hobby zu finden. Man hat hier sein eigenes Haus und macht alle Reparaturen und Änderungen fast immer selbst; das kostet mehr Zeit als eine gemietete Wohnung in DL. Durch das günstige Klima wachsen nicht nur das Gras und die Zitronen, sondern auch das Unkraut fast das ganze Jahr hindurch, so daß man oft den Rasenmäher zu schieben hat. Meistens hat der OP auch ein Auto, da die Entfernungen in einer 2-Millionen-Stadt mit fast nur Einfamilienhäusern sehr groß sind. Der Wagen erfordert auch mehr Zeit zur Pflege als ein Fahrrad in DL. Und ist alles im Haus fertig. so möchte die Familie gern irgendwohin fahren, so daß der OM am Steuer sitzt, obwohl die ganze Welt eventuell CQ VK ruft. Wird die Familie größer, dann muß meistens der OM weichen und sein Gerät in der Garage aufbauen, da es hier weder Keller noch Bodenräume gibt. Nicht oft gestattet die OW dem OM, daß die Station mit den Werkzeugkisten und Strippen und tausend Dingen im sun room (Veranda an der Gartenseite) oder dem lounge room (gute Stube, in welcher der offene Kamin steht) aufgestellt wird. Wenn es hier zwar in Sydney auch keinen Frost oder Schnee gibt, so wird es doch in der Garage im Winter morgens und abends recht ungemütlich. Dieser Umstand trägt sehr dazu bei, daß an Regen- oder Wintertagen nicht sehr viele VK's am Bande sind. In DL dürfte das gerade umgekehrt der Fall sein.

Monatlich findet eine Versammlung vom Wireless Institution of Australia im Science House statt. Dort gibt es die begehrten QSL's; die Verwaltung wird diskutiert, und technische Vorträge steigen. Wohl 50 bis 100 OM's finden sich da zusammen. Wenn man allerdings in das internationale Adreß-

buch (Call Book) der Amateure sieht, wird man kaum Amateure in Sydney oder Melbourne feststellen. Nun, hier ist es üblich, nur die City z. B. mit Sydney zu bezeichnen. Wenn man in DL z.B. Berlin-Charlottenburg sagt, so sagt man hier nur Charlottenburg. So entfallen auf das Gebiet von Sydney etwa 600 Namen von Vororten, in denen wohl 90 % aller VK2-Stationen bestehen.

Im Winter (August) sind abends immer einige VK und ZL auf 80 m zu hören. DX wäre möglich, jedoch ist der Störpegel hoch. Auf 40 m ist am Nachmittag USA recht gut zu erreichen; einige Radiostationen kommen wohl durch, die aber nicht zu sehr stören, während auf 80 m noch viel Platz ist. Sonntags wird viel Inner-VK-Verkehr auf 40 m gefahren. 20 m dient sowohl der lokalen Unterhaltung wie dem DX, wobei lokale Stationen oft DX stören; nur die W's sind stark genug. Doch gibt es immer Ausweichmöglichkeit, da selten mehr als zehn VK2-Stationen auf 20 m arbeiten. Zu manchen Tageszeiten hört man keine einzige VK-Station, obgleich allerhand DX de ist, so z. B. vormittags auf 20 m, wenn Südamerika gut und einige Europäer leise durchkommen. Im letzten Sommer (Dezember hier) fiel auf, daß Italien, Portugal und einige andere Südeuropäer sowie auch besonders Schweden und Finnland hier viel besser als Deutschland, England und andere Mitteleuropäer ankamen. Umgekehrt ist es oft so, daß fast nur VK3 in DL auftritt und VK2 oder VK3 keineswegs dann auch da sein muß, da die Stationen um die weit voneinander entfernt gelegenen Hauptstädte der Staaten Victoria, N. S. W. und Queensland gruppiert sind. DX-Verkehr von VK aus ist dadurch gekennzeichnet, daß die Entfernungen nach Süd- und Nordamerika, nach Europa und Afrika mit etwa 16 000 bis 19 000 km sehr groß sind und andererseits wieder die Inseln im Pazifik sowie die asiatische Küste zu nahe liegen. Immerhin hoffen wir, bald wieder DL-VK-Verkehr machen zu können.

Neubelebung des französischen Fernsehens

Vor wenigen Jahren noch zum größten Teil im Versuchsstadium, ist das Fernsehen heute auf dem besten Wege, ein bedeutender kultureller Faktor zu werden. Nüchterne Zahlen legen dafür das beste Zeugnis ab. Allein in den Vereinigten Staaten - man darf hier natürlich keine europäischen Maßstäbe anlegen - gibt es zur Zeit 147 in Betrieb befindliche Fernsehsender; die Zahl der registrierten Empfänger beläuft sich auf 25 Millionen, und 296 Baulizenzen sorgen für einen monatlichen Ausstoß von 900 000 Empfängern.

Aber auch für die größeren europäischen Länder lassen sich eindrucksvolle Zahlen anführen. Den ersten Platz nimmt hier Großbritannien mit acht Fernsehsendern und 2 500 000 registrierten Empfängern ein. Es folgt Deutschland mit sieben in Betrieb befindlichen Sendern; dazu kommen drei Sender, die bis Ende dieses Jahres noch in Betrieb genommen werden sollen. Dabei ist zu berücksichtigen, daß der deutsche Fernsehfunk erst zu Beginn dieses Jahres das Versuchsstadium verlassen hat und zu einem regelrechten Fernsehprogramm übergegangen ist. Den dritten Platz schließlich behauptet Frankreich.

Diese letztgenannte Tatsache nun hat bei den zuständigen französischen Stellen die Besorgnis hervorgerufen, vom Ausland auf diesem Gebiet endgültig überflügelt zu werden. Aus diesem Grunde wurde zunächst ein großzügiges Programm aufgestellt, das den Bau von neun großen und 38 kleineren Fernsehsendern vorsieht, die ausreichen würden, um das gesamte französische Mutterland zu bestreichen. Die veranschlagten Kosten belaufen sich auf 20 Milliarden Francs (rund 240 Millionen DM), wovon etwa 3 Milliarden Francs (rund 36 Millionen DM) bereits investiert worden sind.

Zusammen mit den für den Rundfunk erforderlichen Neu- und Erweiterungsbauten ergibt sich die ansehnliche Summe von 32 Milliarden Francs (rund 384 Millionen DM), die durch eine leichte Erhöhung der Rundfunkgebühren (325 Francs; das entspricht vergleichsweise einem Opfer je Steuerzahler von drei Päckchen Zigaretten im Jahr) nach und nach aufgebracht werden soll. Dieser Vorschlag muß allerdings erst dem Parlament vorgelegt werden, bevor er verwirklicht werden kann.

Hat erst einmal dieses finanzielle Problem seine Lösung gefunden, so rechnet man damit, daß auch die Preise der Fernsehempfänger, die früher rund 150 000 Francs (etwa 1800 DM) betrugen und heute bei 100 000 Francs (etwa 1200 DM) liegen, auf zunächst 90 000 Francs (etwa 1080 DM) und später sogar auf 60 000 Francs (etwa 720 DM) sinken werden. Dieser Preis würde etwa den zur Zeit billigsten deutschen Geräten entsprechen. Zahlungserleichterungen bis zu zwölf Monatsraten sollen ein übriges tun, um den Absatz der Empfänger und damit die Verbreitung des Fernsehens in Frankreich zu fördern. BdP

England

13 010 856 Rundfunk-Empfangsgenehmigungen wurden in Großbritannien und Nordirland im August dieses Jahres gezählt. Hierin sind 2 479 454 Fernseh-Empfangsgenehmigungen und 195 075 Genehmigungen für Autoempfänger eingeschlossen. Der Zuwachs an Fernsehteilnehmern war beispielsweise im Monat Juni dieses Jahres 64 149.

Nach den bisher vorliegenden Meldungen ist in diesem Jahre mit einer Produktion von rd. 1 000 000 Fernseh-Empfängern zu rechnen; 1952 waren es 800 000 Stück. Auf der letzen Londoner Radio-Ausstellung hatten 36 Firmen etwa 190 verschiedene Fernseh-Empfängermodelle ausgestellt. Die Empfänger sind bevorzugt mit Rechteckröhren bestückt, und zwar benutzen 35 % 17"-Röhren, 27 % 14"-Röhren und 12 % 12"-Röhren. Runde 15"-Röhren findet man bei 10 % aller Empfänger und 16"-Röhren nur bei wenigen Modellen. Mit runden 21"-Röhren waren nur zwei Geräte ausgerüstet.

Schweiz

Die Schweizer Post (PTT) hat einen Auftrag auf einen kompletten Fernseh-Ubertragungswagen an die englische Firma Marconi's Wireless Telegraph Comp. Ltd. vergeben. Der Übertragungswagen (ausgerüstet u. a. mit drei Image-Orthicon-Kameras) soll innerhalb von neun Monaten geliefert werden, um die europäische Fußballmeisterschaft im Juli 1954 aus Bern übertragen zu können.

Die elegante, formvollendete Phonotruhe ist mit einem 8 Röhren-Hochleistungssuper und einem betriebssicheren 10-Plattenwechsler ausgerüstet. Rundfunkempfangsteil mit 6 Tasten für UKW, KW, MW, LW, 8 Röhren (EF 80, EC 92, ECH 81, EF 41, EM 34, EABC 80, EL 84, B 250c75), 6/9 Kreise, Ratiodetektor, UKW-Vorstufe, Breitband-Lautsprecher-Kombination (2 Lautsprecher), getrenntes Höhenund Baßregister, Leistungs-Endstufe, eingebauter Gehäusedipol. 3 Touren-10 Plattenspieler für Platten von 16 bis 30,5 cm in gemischter Reihenfolge, mit Kristall-Tonabnehmer, umschaltbar auf Normal- und Mikroschrift,

eigener Klangregler. Edelholzgehäuse: 700 mm breit, 820 mm hoch, 400 mm tief.

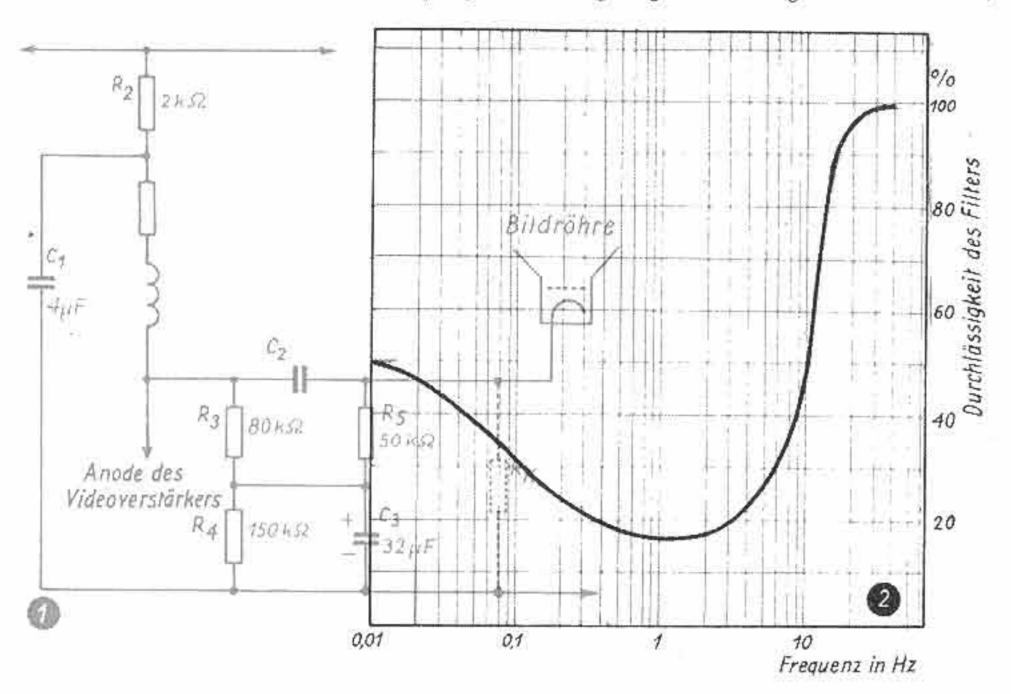
GRAETZ KG - ALTENA (WESTF.)

+ 3 Kreise für Ton, eingebaute Antenne, Allstrom 220 V, Außenmaße: 410 mm hoch / 475 mm breit / 455 mm tief.

Durch höchstmögliche Betriebssicherheit werden unnötige Service-Schwierigkeiten vermieden

> Preis für 1-Kanal-Ausführung DM 948.-Preis für 4-Kanal-Ausführung DM 978.-

z. Z4. der billigste Fernsehempfänger in der in der Bundesrepublik


GRAETZ KG-ALTENA (WESTF.)

师

ZEITSCHRIFTENDIENST

Bildstörungen durch Flugzeuge

Die Störungen entstehen durch Reflexion an dem in der Luft befindlichen Flugzeugkörper und durch Überlagerung des reflektierten mit dem direkt zum Empfänger gelangenden Strahl. Da der reflektierte Strahl einen längeren Weg als der direkte Strahl zurücklegt, treffen beide mit einer gegenseitigen Phasenverschiebung an der Empfangsantenne ein, die zu Geisterbildern auf dem Bildschirm führen. Schlimmer als diese Geisterbilder sind aber Erscheinungen, die durch die Bewegung des Flugzeuges hervorgerufen werden;

durch diese Bewegung ändert sich die Phasendifferenz zwischen reflektiertem und direktem Strahl an der Antenne ständig. Dies hat eine dauernd wechselnde Verstärkung und Schwächung der Signalstärke und damit ein periodisches Schwanken der Bildhelligkeit zur Folge. Dieses durch die wechselnde Helligkeit verursachte "Flattern" des Bildes wirkt auf den Betrachter besonders irritierend; es ist daher nur natürlich, daß man nach Schaltungen sucht, die das Bildflattern möglichst weitgehend ausschalten.

Das Bildflattern ist das Ergebnis der durch die Interferenzerscheinungen entstehenden Pendelungen der effektiven Signalstärke, die man als zusätzliche Modulation des Trägers auffassen kann. Die Frequenz dieser Modulation hängt, außer von der Trägerfrequenz, naturgemäß von Entfernung, Höhe, Flugrichtung und Geschwindigkeit des Flugzeugs ab, liegt aber beim UKW-Fernsehen hauptsächlich zwischen 0,1 und 40 Hz; am unangenehmsten wirken aber die Flatterfrequenzen zwischen 0,5 und 10 Hz.

Durch eine automatische Verstärkungsregelung läßt sich das Flattern kaum beseitigen, da man die Zeitkonstante der Regelung so klein machen müßte, daß die Schaltung zu störanfällig werden würde. Auch ein Abschneiden der sehr tiefen Modulationsfrequenzen durch eine kapazitive Kopplung führt nicht zum Ziel, da man auf diese Weise die Gleichstromkomponente der Videospannung verliert und eine Einebnung der mittleren Bildhelligkeit erhält.

Man benötigt also ein frequenzselektives Filter, das die Modulationsfrequenzen von etwa 0,1 Hz bis 10 Hz unterdrückt, die höheren Frequenzen und die Gleichstromkomponente dagegen möglichst wenig dämpft. Wiensche Brücke, Parallel-T-Filter, überbrücktes T-Glied und ähnliche Netzwerke scheiden wegen der zu geringen Bandbreite aus. In den Fernsehempfängern der Firma "His Master's Voice" wird ein durch Patente geschütztes Filter benutzt, das sehr viel besser als alle üblichen Filter das Bildflattern unterdrücken kann. Zwar läßt sich auch mit dem neuen Filter die Gleichstromkomponente nicht völlig erhalten, doch ist deren Dämpfung auf rund 50 % der hohen Modulationsfrequenzen durchaus tragbar.

In Abb. 1 ist die in dem HMV-Empfänger angewandte Filterschaltung dargestellt, wie sie der Zeitschrift "Radio & Television News", August 1953, Seite 38 ff., entnommen wurde, Durch C_1 und R_2 findet zunächst eine Anhebung der tiefsten Frequenzen und der Gleichstromkomponente im Anodenkreis des Videoverstärkers statt. Die Videospannung geht dann durch das eigentliche Filter, das der Videospannung zwei Wege zur Katode der Bildröhre bietet. Der eine Weg führt über den Kondensator C_2 , der alle Frequenzen oberhalb von 50 Hz ungeschwächt durchläßt, unterhalb dieser Frequenz aber einen schnellen Abfall bewirkt. Die Gleichstromkomponente und die sehr niedrigen Frequenzen kommen über R_3 , R_4 und R_5 an die Katode der Bildröhre; dieser Teil des Filters hat durch den Kondensator C3 eine mit steigender Frequenz fallende Durchlässigkeitskurve. Die beiden Durchlässigkeitskurven ergänzen sich so, daß die in Abb. 2 gezeigte Frequenzcharakteristik des Filters mit einem Minimum bei 1 Hz entsteht. Die Gleichstromkomponente läßt sich relativ noch mehr anheben, wenn man R_2 und R_4 größer als die angegebenen Werte macht: R_4 kann im Extremfall ganz fortgelassen werden.

Bei der Schaltung ist allerdings auch einige Vorsicht geboten. So verhindert sie beispielsweise die getreue Wiedergabe sehr schneller Wechsel der mittleren Bildhelligkeit (Blitzaufnahmen), doch wird man diesen Nachteil in Kauf nehmen, wenn dafür das Bildflattern nicht mehr auftritt. Dann muß auf den Einfluß der Widerstände im Filter auf die Gleichstrompotentiale der Bildröhre geachtet und dieser gegebenenfalls kompensiert werden. Die Impedanzen der Empfängerschaltung an der betreffenden Stelle müssen durch entsprechende Wahl der Filterkomponenten berücksichtigt und die Verdrahtungen möglichst kapazitätsarm ausgeführt werden. Bei Beachtung dieser Vorsichtsmaßregeln läßt sich das Filter auch nachträglich in vorhandene Empfängerschaltungen einfügen, wofür in der Originalarbeit zwei Beispiele gezeigt werden.

RIMAVOX

Das ideale Amateur-Tonbandgerät zum Selbstbau

Formschön — Preiswert — Zuverlässig

Für 110/220 V Wechselstrom - Bandgeschwindigkeit 19 cm/sec. und 9,5 cm/sec.

I. EINBAUGERÄT Preis des kompletten Bausatzes DM 270,—

Bestehend aus: 1. Mechanischer Bausatz einschl. Motor und Verstärkerchassis (fertig zusammengebaut und lauffertig)

2. Elektrischer Bausatz kompl. Einzelteile einschließlich Röhrensatz und 3 AEG-Köpfe, mit eigenem Netzteil

Baumappe mit Schaltung, genauem Verdrahtungsplan u. ausführl. Baubeschreibung DM 3,—
II. KOFFERGERÄT Preis des kompletten Bausatzes DM 397,—

Bestehend aus: 1. Mechan. u. Elektr. Bausatz (wie oben beschrieben)
2. Ergänzungsbausatz kompl. Einzelteile einschließlich
Röhre und perm.-dyn. Lautsprecher für Endverstärker

3. Koffer fertig überzog. m. Beschlägen v. Lautspr.-Abdeck. Baumappe mit Schaltung, genauem Verdrahtungsplan v. ausführl. Baubeschreibung DM 3,—

Fordern Sie bitte den Prospekt Ri an.

RIM-Basteljahrbuch 1953 gegen Voreinsendung von DM 2,—

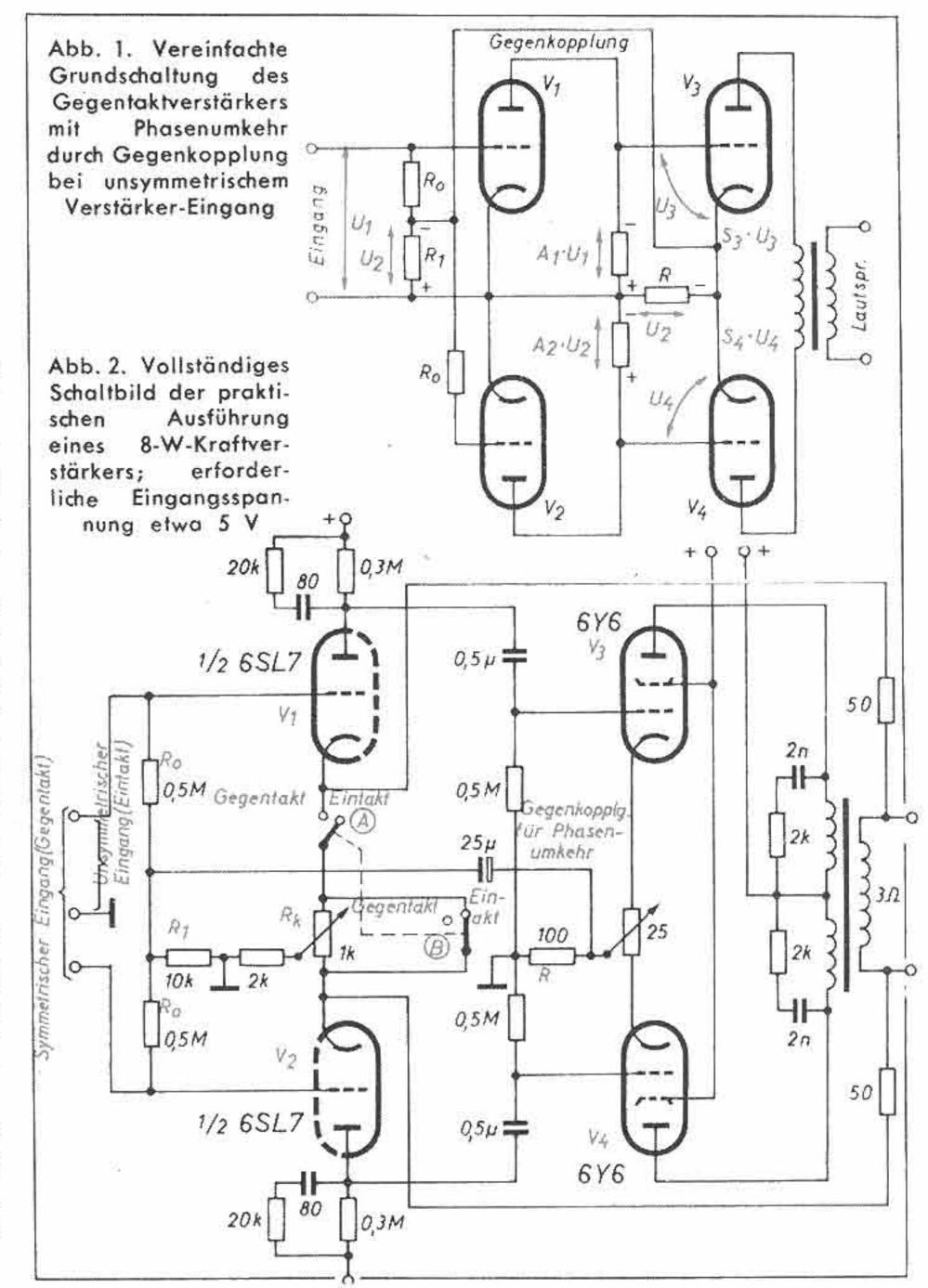
(Postscheckkonto München Nr. 13753) kostenlose Zustellung

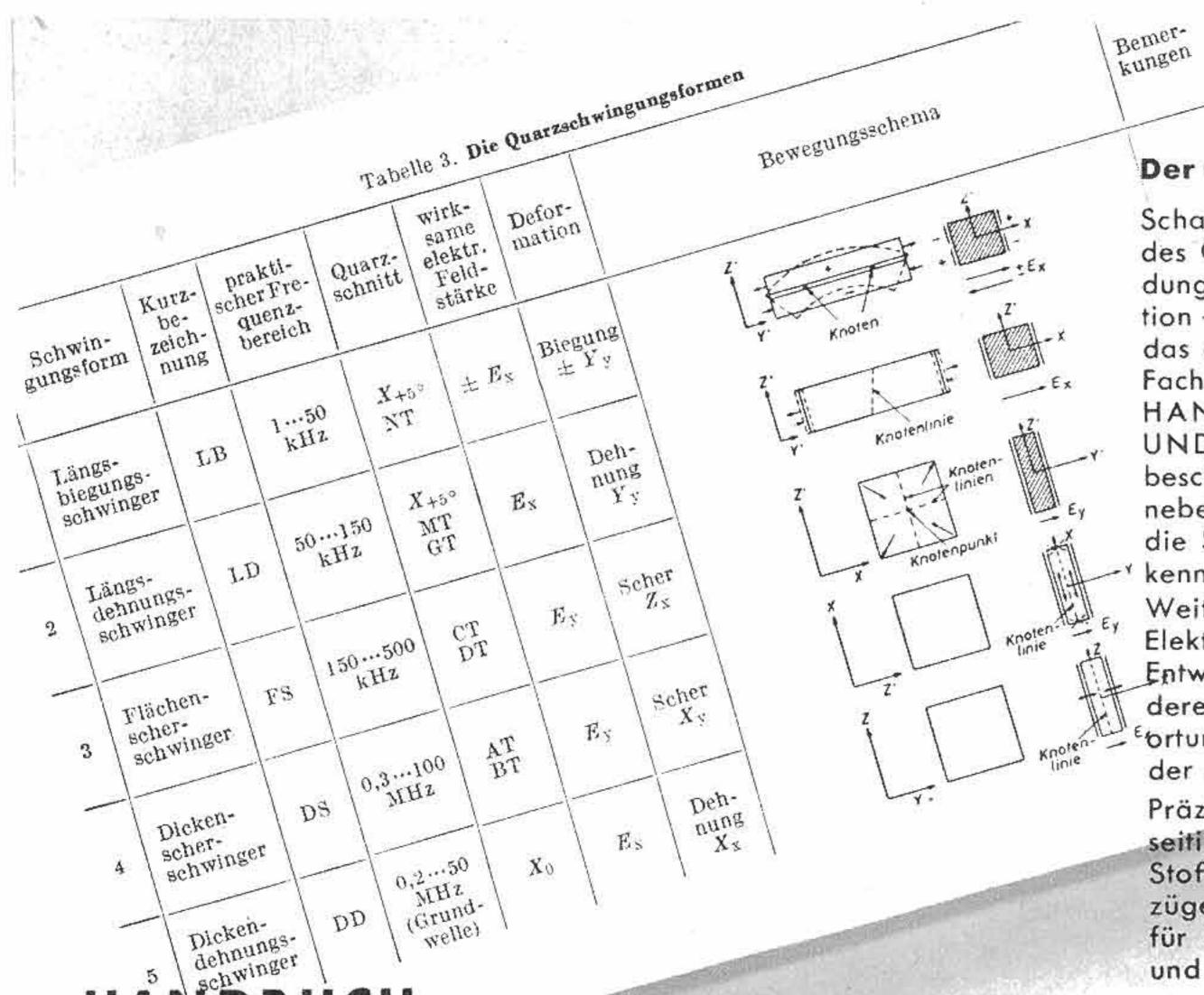
RADIO-RIM

Versandabteilung · München 15 · Bayerstr. 25b

Gegentaktverstärker mit neuartiger Phasenumkehr

In der englischen Zeitschrift "Wireless World" wurde vor einiger Zeit (H. 5 [1953], Seite 201 ... 204) ein Gegentakt-Kraftverstärker beschrieben, der sowohl mit einem Eingang für symmetrische als auch mit einem solchen für unsymmetrische Spannungen ausgestattet ist. Dieser Verstärker verdient insofern Beachtung, als er für unsymmetrische Eingangsspannungen weder einen entsprechenden Eingangstransformator noch eine besondere Phasenumkehrröhre hat; die Phasenumkehr wird vielmehr auf eine bisher wohl noch nicht angewendete Weise erreicht, die deshalb nachstehend erläutert werden soll.


Die gegen "Erde" unsymmetrische Eingangsspannung U_1 des zweistufigen Verstärkers nach Abb. I liegt zwischen Gitter und Katode der einen Röhre V_1 der ersten Gegentaktstufe. Dem Steuergitter der zweiten Röhre V_2 dieser Stufe muß nun eine gleich große, aber um 180° phasenverschobene Signalspannung U_2 zugeführt werden. Zu diesem Zweck liegt in Reihe mit den beiden Gitterableitwiderständen R_0 der Röhren V_1 und V_2 ein Widerstand R_1 , an dem man diese Spannung U_2 entstehen läßt. Die Spannung U_2 wirkt also gleichzeitig als Steuerspannung für V_2 und als Gegenkopplungsspannung für V_1 . Bereits hieran erkennt man, daß U_1 und U_2 dem Betrage nach nicht völlig übereinstimmen können, doch ist der Unterschied nur recht gering und stört die Symmetrie des Verstärkers nicht erwähnenswert.


Die am Widerstand R_1 erzeugte Spannung ist im wahrsten Sinne des Wortes eine Gegenkopplungsspannung, denn sie wird dem den beiden Gegentakt-Endröhren V_3 und V_4 gemeinsamen Katodenwiderstand R entnommen. An R tritt aber naturgemäß nur dann eine Wechselspannung auf, wenn V_3 und V_4 nicht vollkommen symmetrisch arbeiten. Diese Unsymmetrie braucht aber prozentual nur gering zu sein, damit am Katodenwiderstand R eine der Eingangsspannung U_1 gleiche Spannung U_2 entsteht, weil hier die Verstärkung A der Röhre V_1 bzw. V_2 dazwischen liegt. Aus dem gleichen Grunde kann auch R verhältnismäßig klein sein, so daß durch ihn kein nennenswerter Verlust an Verstärkung verursacht wird. Hierin ist der grundlegende Unterschied zu dem bekannten "phase-splitter" zu sehen, bei dem Katoden- und Anodenwiderstand gleiche Werte haben müssen.

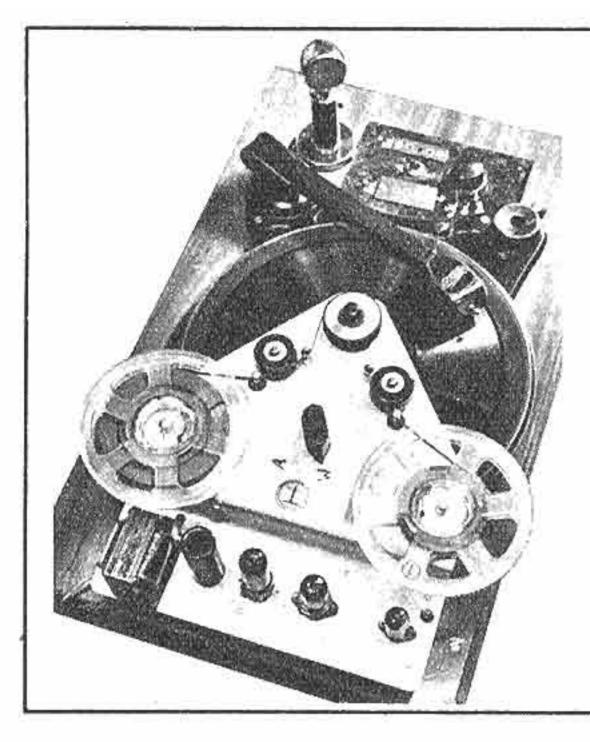
Die Phasenumkehr durch Gegenkopplung arbeitet gleichzeitig als Ausgleich etwaiger Unsymmetrien im Verstärker, die übrigens auch dann wirksam ist, wenn der symmetrische Eingang mit symmetrischen Spannungen benutzt wird (Abb. 2). Wird etwa U_2 in bezug auf U_1 aus irgendeinem Grunde zu klein, so arbeiten V_3 und V_4 zu unsymmetrisch und ein zu großer Spannungsabfall muß am Widerstand R auftreten, U_2 nimmt also zu. Die ganze Schaltung arbeitet daher außerordentlich stabil.

Die Arbeitsweise der neuen Schaltung ist recht einfach zu übersehen, wenn man die im Schaltprinzip Abb. 1 auftretenden Wechselspannungen U_2 , U_3 und U_4 ausrechnet. Obwohl diese Rechnung ganz unkompliziert ist, soll hier nur das vereinfachte Endergebnis angeführt werden, dem man die wichtigsten Verhältnisse entnehmen kann. Aus der Abb. 1 ergibt sich ohne weiteres:

 $U_2 = U_3 \cdot S \cdot R - U_4 \cdot S \cdot R_1$ $U_3 = A \cdot U_1 - U_2;$ $U_4 = A \cdot U_2 + U_2$

Der Quarz in der Hochfrequenztechnik

Schaltungstechnik, Physik und Technologie des Quarzes, seine Bedeutung und Anwendung zur Frequenzstabilisierung und -selektion – ein umfangreiches Arbeitsgebiet, über das es bisher keine ausreichende deutsche Fachliteratur gab – werden im II. Band des HANDBUCHES FÜR HOCHFREQUENZ-UND ELEKTRO-TECHNIKER eingehend beschrieben. Eine Seite daraus zeigt die nebenstehende Abbildung – als Beispiel für die Sorgfalt der Bearbeitung, die das Buch kennzeichnet.


Weitere Gebiete der Hochfrequenz- und Elektrotechnik von großer Bedeutung für die Entwicklung unserer Zivilisation – unter anderem Fernsehen, UKW-FM-Technik Funkfortung, industrielle Elektronik – behandelt der neue Band in gleicher Ausführlichkeit. Präzise Knappheit der Formulierung, Vielseitigkeit und übersichtliche Gliederung des Stoffes, Handlichkeit des Formates sind Vorzüge dieses wertvollen Nachschlagewerks für Studium und Praxis, das erschöpfend und treffsicher Auskunft gibt.

FÜR HOCHFREQUENZ- UND ELEKTRO-TECHNIKER · II. Band

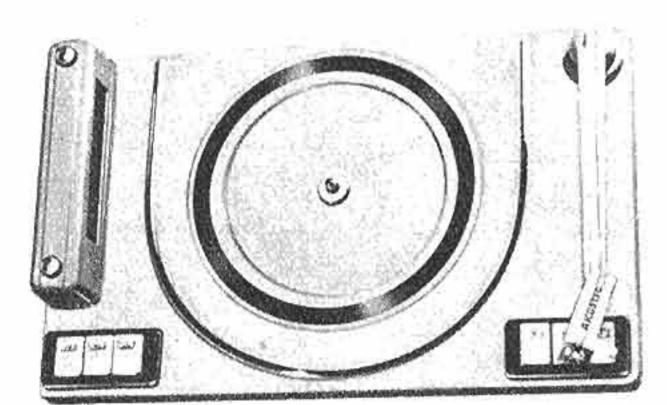
784 Seiten · 638 Abbildungen · Ganzleinen · 15.- DM

VERLAG FUR RADIO-FOTO-KINOTECHNIK GMBH . BERLIN-BORSIGWALDE (Westsektor)

HANDBUCH

Das billige Volksbandgerät VB 53/3

Das Plattenspieler-Aufsatzgerät zum Selbstbau mit Schnellrücklauf!


Kompl. Bausatz mit Köpfen, Röhren, Verstärker- und Netzteil DM 139,50

Prospekte hierüber auf Anforderung!

Radio-Fett

Rundfunk-, Fernseh- und Tonbandgeräte Berlin-Charlottenburg 5 Wundtstr. 15 und Kaiserdamm 6 Tel.: Sammel-Nr. 34 53 20

Das neue Drucktasten-Chassis Modell 253

Moderne Form, technisch unübertroffen

Kurt Schröder • Berlin-Neukölln • Finowstr. 27

Fernseh-Empfänger Selbstgebaut

Eine gründliche Anleitung zum Selbstbau eines Fernsehempfängers aus sechs einzeln herzustellenden Von C. MOLLER Baugruppen unter Verwendung einer normalen Oszillografenröhre oder einer speziellen Fernseh-Bildröhre

eine Anleitung, wie sie sich der Amateur wünscht: mit großem Schirm

windles synd

ALCOHOL: NA

OR THE PROPERTY AND ADDRESS OF THE PARTY AND A

\$100 YE 100

invastrinos (Contra

THE RESIDENCE IN COLUMN GOTTLE TOTAL STATE

ALC: NO CONTRACTOR OF THE PARTY BUTTO SECURITION

ARREST VALUE OF THE PROPERTY O

SAME TAXABLE AND THE PARTY OF T

ADMICT CONTRACTOR THE STATE OF THE PERSON OF THE

66.22(n), (1) (2) (4) (4) (4) (4) (4) PROFESSION NAMED AND PROFESSION

NOW ASSESSMENT OF THE PARTY OF

Marine Street Company of the Company

ACCRECATE STATE OF THE PARTY OF PERSONAL PROPERTY.

THE PARTY OF THE PARTY.

ANYONE WAS ASSESSED. THE PROJECT OF ANY MARKET SERVICE AND THE

1-FDH-SAN and - Individual or

SUPPLEMENTAL PROPERTY AND ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY

Production from the State of th

MATERIAL STATE OF THE PARTY OF COMPANDATION OF THE PERSON OF

THE RESERVE OF THE PARTY OF THE CONTRACTOR OF STREET, MATERIAL PROPERTY AND ADMINISTRATION OF THE PARTY AND ADMINIST

Application of the second section of the sec

PERCENTAGE OF THE OFFICE ADDRESS.

THE RESIDENCE OF STREET, SANSAGE AND ADDRESS. ANALYSIS CONTRACTOR OF THE TOTAL PROPERTY OF THE PARTY OF

APPROPRIATE THE PROPERTY OF THE PERSON OF TH

A REAL PROPERTY AND ADDRESS OF THE PROPERTY CARD klar und verständlich geschrieben, übersichtlich gegliedert, durch Fotos und Skizzen erläutert, mit vollständigem Schaltbild und ausführlicher Einzelteilliste! DIN A 5 · 32 Seiten · Preis 1,50 DM Bei Voreinsendung des Betrages auf unser Postscheckkonto Berlin West 7664 erfolgt die Lieferung spesenfrei

A STATE OF THE STA

- ANALYSIS - CANADA ANALYSIS -COLUMN TO THE PROPERTY OF THE

A SEPTEMBER OF THE PROPERTY OF

- AND TO BE A SECOND OF THE PROPERTY OF THE PR

CONTRACTOR OF THE PROPERTY OF

FUR RADIO-FOTO-KINOTECHNIK GMBH

Darin ist S die Steilheit der Köhren V_3 und V_4 und A die Spannungsverstärkung der Röhren V_1 und V_2 .

Aus den drei Gleichungen erhält man

$$\frac{U_2}{U_1} = \frac{S \cdot R \cdot A}{1 + S \cdot R \cdot (A+1)} \text{ und } \frac{U_3}{U_4} = 1 + \frac{1}{S \cdot R \cdot (A+1)}$$

Nimmt man beispielsweise für $S \cdot R = 1$ und A = 40 an, so ergibt sich:

$$\frac{U_2}{U_1} = \frac{40}{42} \text{ und } \frac{U_3}{U_4} = 1 + \frac{1}{41}$$

Am Eingang der ersten Stufe würde somit eine Unsymmetrie von rund 5 %, am Eingang der zweiten Stufe dagegen nur noch von wenig mehr als 2 % herrschen.

Das Schaltbild der praktischen Ausführung des Kraftverstärkers ist in Abb. 2 dargestellt. Hingewiesen sei noch auf die Gegenkopplung "über alles" von der Lautsprecherseite des Ausgangstransformators auf die Katoden der Röhren V_1 und V_2 . Mit Hilfe der Schalter A und B wird bei symmetrischer Eingangsspannung die Gegenkopplungsspannung parallel zum Katodenwiderstand $R_{\mathbf{k}}$ gelegt, während bei unsymmetrischer Eingangsspannung $R_{\mathbf{k}}$ kurzgeschlossen und die Gegenkopplungsspannung zwischen die Katoden von V, und V2 geschaltet wird. Diese Umschaltung erfolgt, da sonst bei unsymmetrischem Eingang der Widerstand R auch noch die an $R_{\mathbf{k}}$ auftretende Gegenkopplungsspannung kompensieren müßte.

-BRIEFKASTEN

Fernsehempfang über 1000 km

In den Nachmittagsstunden des 30. Mai 1953 konnte auch ich den Empfang des Fernsehsenders Moskau in Hinsbeck (der Fernsehrelaisstation der Deutschen Bundespost zur Übertragung der englischen Krönungsfeierlichkeiten) beobachten. Es wurde ein Fußballspiel übertragen. Der Sender fiel mit großer Feldstärke ein, war aber durch starke, kurzzeitige Schwundeinbrüche und durch einen fremden UKW-Sender, dessen Frequenz mitten im Band des Bildkanals lag, stark gestört. Das "Pumpen" des Bildes — wie es H. Wisbar in seinen interessanten Austührungen in FUNK-TECHNIK, Bd. 8 [1953], H. 18, S. 575 bezeichnete - sowie Doppel- und Mehrfachbilder konnten einige Zeit hindurch beobachtet werden.

Bei der in Heit 18, S. 575 der FUNK-TECHNIK berechneten Laufzeilditferenz ist jedoch augenscheinlich ein Recheniehler unterlaufen. Die Dauer einer Ablastzeile, und zwar des zur Bildübertragung benutzten Teils, ist nicht 15,5 · 10-3 s, sondern 52,5 · 10-6 s (64 us dauert die Zeile insgesamt; davon sind 18 % oder 11,5 us dunkelgesteuert und werden vom Zeilenrücklauf in Anspruch genommen). Ist nun die Bildbreite, d. h. die hellgesteuerte Zeilenlänge auf dem Leuchtschirm der Bildröhre, b = 290 mm und der Abstand der beiden Bildkonturen a = 32 mm, so errechnet sich daraus ein Laufzeitunterschied von

$$t_{\rm X} = -\frac{32 \cdot 52,5 \cdot 10^{-6}}{290} = 5.8 \cdot 10^{-6} \, s$$

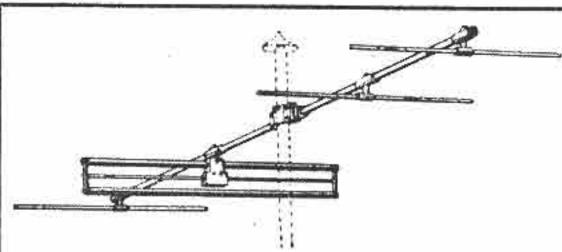
oder ein Wegunterschied von $3 \cdot 10^{-5} \cdot 5.8 \cdot 10^{-6} = 1.74 \text{ km}$.

Ein solch geringer Wegunterschied bei einer überbrückten Entiernung von mehr als 2000 km dürfte sich etwas leichter erklären lassen als 500 km Wegdifferenz, und zwar vielleicht

- 1) durch die Annahme verschieden gekrümmter Wege infolge Doppelbrechung (?) in der Troposphäre in vertikaler Richtung oder
- 2) durch Annahme einer Beugung in horizontaler Ebene an Grenzschichten mit waagerecht verlaufendem Temperaturgradienten,
- 3) eventuell auch durch Annahme eines testen Retlexionspunktes seitlich der Hauptrichtung, wobei die Welle auf diesem Umweg anders verlaufende Schwunderscheinungen erleidet als die Welle des Hauptweges.

Diese Annahmen bedürfen selbstverständlich noch näherer Untersuchungen. H. Bödeker

Der Verfasser hat inzwischen selbst auf den Divisionsfehler hingewiesen; eventuelle Reflexionen bzw. Doppelbrechungen vermutet er jedoch in der Ionosphäre, an der anomalen E-Schicht. Eine Korrelation zwischen dieser Ionisationsschicht, dem Auftreten von sogenannten Nahempfangsbedingungen auf KW, dem Fernsehweitempfang auf UKW und den hierbei auftretenden Sprungentfernungen von etwa 1600 ... 2200 km ist wiederholt festgestellt worden (FUNK-TECHNIK, Bd. 8 [1953], H. 15, S. 470).


Weitere Beobachtungen werden sicherlich noch manchen interessanten Einblick in die Ausbreitungsbedingungen zeigen. Im übrigen machte uns H. Hewel darauf aufmerksam, daß nach seinen Erfahrungen bei einem Fernsehweitempfang des öfteren noch sehr schwer erkennbare Verschiebungen der Umwegreflexionen um einige Zeilen auftreten, die eine Auswertung nicht gerade erleichtern.

Aufnahmen vom FT-Labor: Schwahn (24). Zeichnungen vom FT-Labor nach Angaben der Verfasser: Beumelburg (6), Kortus (14), Ullrich (3), Trester (16). Seiten 663 und 664 ohne redaktionellen Inhalt

Verlag: VERLAG FUR RADIO-FOTO-KINOTECHNIK GMBH, Berlin-Borsigwalde (Westsektor), Eichborndamm 141-167. Telefon: Sammelnummer 49 23 31. Telegrammanschrift: Funktechnik Berlin. Chefredakteur: Curt Rint (z. Z. Urlaub), Berlin-Charlottenburg; Stellvertreter und Chefkorrespondent: Werner W. Diefenbach, Berlin und Kempten/Allgäu. Telefon 2025, Postfach 229. Verantwortlich für den Anzeigenteil: Walter Bartsch, Berlin. Nach dem Pressegesetz in Osterreich verantwortlich: Dr. W. Rob, Innsbruck, Falmerayerstraße 5. Postscheckkonten FUNK-TECHNIK: Berlin, PSchA Berlin West Nr. 2493; Frankfurt/Main, PSchA Frankfurt/Main Nr. 254 74; Stuttgart, PSchA Stuttgart Nr. 227 40. Bestellungen beim Verlag, bei den Postämtern und beim Buch- und Zeitschriftenhandel. FUNK-TECHNIK erscheint zweimal monatlich mit Genehmigung der französischen Militärregierung unter Lizenz Nr. 47/4d. Der Nachdruck von Beiträgen ist nicht gestattet. Die FUNK-TECHNIK darf nicht in Lesezirkel aufgenommen werden. Druck: Druckhaus Tempelhof, Berlin.

MENTOR

Antennen

für UKW und Fernsehen

Mentor-Bauteile

bekannt für hohe Qualität Neuer Katalog auf Wunsch

Ing. Dr. PAUL MOZAR · Düsseldorf · Schließfach 6085
Fabrik für Feinmechanik und Elektrotechnik

Chiffreanzeigen

Adressierung wie folgt: Chiffre . , . FUNK-TECHNIK, Berlin - Borsigwalde, Eichborndamm 141-167

Verkäufe

Röhren-Hacker schickt Ihnen sofort kostenlos die neueste Röhren- und Material-Preisliste. Berlin-Neukölln, Silbersteinstraße 15, Ruf 62 12 12. Sie kaufen dort sehr günstig!

Biete

Braunsche Röhren 5 BP 4
zum Preise von 25,-- DM

Walter Donat, Ludwigsburg, Myliusstr. 9

Wegen Lagerräumung abzugeben: Magnettonbänder, je 1000 m, freitragend, Musikqualität, einschl. Archivkarton, DM 14,—, dto. auf Plexiglasspule, je 700 m, DM 13,—, dto. jedoch Diktierqualität, DM 8,—; Wickelkerne, 70 mm Ø, DM 0,25 pro Stück, dto. 100 mm Ø DM 0,70; Archivkartone für 1000-m-Band DM 0,60 pro Stck. Lieferung per Nachnahme, ab DM 50,— spesenfrei. Anfragen unter F. B. 7073

AEG-Kollektorwickelmotoren, gebraucht, DM 15,-. Anfragen unter F. D. 7075

Amerikanische **Drahttonköpie** DM 28,20; Lautspr.-Chassis, 2 Watt, 130 mm ∅, per.-dyn., DM 6,20; Ausgangsübertrager, 2 Watt, DM 2,10; dto. 4 Watt DM 2,70, jeweils für 7000/4500/6/4 Ohm. Anfragen unter F. C. 7074

Kaufgesuche

Meßinstrumente

Marken-Meßgeräte, Radioröhren und Radioteile-Posten. Angebote bitte nur mit Preisen.

Arlt Radio Versand Walter Arlt Berlin-Charlottenbg.1, Kaiser-Friedrich-Straße 18 - Telefon 34 66 04/05 Berlin-Neukölln, Karl-Marx-Straße 27

Ecke Reuterstraße - Telefon 60 11 04/05

Düsseldorf, Friedrichstr. 61a. Tel. 23175

Röhrenrestposten, Materialposten, Kassaankauf. Attertradio, Bln. SW11, Europahaus Labor - Meßger. - Instrumente kauft lid. Charlottenbg. Motoren, Berlin W35, 248075

Wir suchen und kaufen zu Höchstpreisen:
Röhren: AC 101, CB 1, CB 2, CF 50, DG 7/2,
DG 9/4, DCG 4/1000, EZ 12, EZ 150, GR 150 A,
HR 1/60/05, KK 2, LB 1, LB 8, LD 1, LD 2, LD 5,
LG 12, LK 199, LS 50, LV 5, RG 62, RGQ 10/4,
RGQZ 1,4/04, RGQZ 7,5/06, STV 75/15, 75/15 Z,
100/200, 150/20, 150/200, 280/40, 280/80,
280/80 Z, 280/150, 280/150 Z, UBL 3, 07 S 1,
304 TL, RV 258, RV 12 P 2000, Relais Type 64a
Bv 3402/1 Bv 9357/d, Bosch MP-Kondens.
2x0,5 mF/160 V 4 mF/160 V u. a.

RADIO-FETT

Berlin-Chlbg. 5, Wundtstr. 15 und Kaiserdamm 6, Tel.:Sam.-Nr.345320

STEINLEIN

Magnetische Spannungs-Gleichhalter arbeiten mit Eisen-Untersättigung!

Daher geringe Erwärmung und Streuung. Geringer Frequenzeinfluß und Kurvenverformung. Lange Lebensdauer und Brummfreiheit. Große Genauigkeit und Konstanz. Typen: 10 - 25 - 40 - 65 - 125 - 175 - 250 - 500 750 - 1000 - 1500 - 2000 - 3000 - 5000 Watt. Sonderanfertigung für jeden Spezialzweck!

STEINLEIN

Regler und Verstärker Düsseldorf Erkrather Str. 120

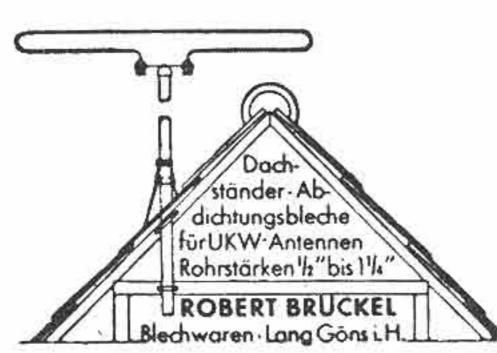
Kristall-Mikrofon-Kapsel ohne Vorverst. an TA anschließbar. da 3mV/ub — 50/10000 HZ 6,—

Tisch-Ringständer

genau pass. f. vorst. Mikrofonkapsel 2,—

Zerhacker-Patrone

schwere stab. Ausführung 6 V 50 W mit Wiedergleichrichter besonders für TX portable und Autobetrieb 1.50


Kehlkopf-Mikrofon mit Bügel ohne Zuleitung 1,50

Hochspannungs-Gleichrichter

Philips 1877 orig. verp. ½ Jahr Garantie 15 KV 3mA 4.50

Batterie Röhrensatz T Serie Heizstrom nur 25/50 mA!!! 1T4T-1S5T-1R5T-1S4T compl. 15,—

RADIO GEBR. BADERLE HAMBURG 1
Spitalerstraße 7 Ruf 32 79 13

Masch-, Auto-, Hoch- u. Tiefbou, Radio-, Elektro-, Betriebstechn. Heizung. Gas. Wasser, Spez.-Kurse f. Techniker, Zeichner, Facharbeiter, Industriemstr., Vorb. z. Ing.-Schule, Meisterprüf. Progr. frei. Techn. Fernlehrinstitut (16) Melsungen E

GRAWOR -Laufwerke

für Normal- und Langspielplatten in W und GW zeigen wir Ihnen während der FUNKAUSSTELLUNG in Düsseldorf am Stand 4 in Halle 5 A.

GRAWOR -Vertrieb

Wuppertal-E., Brückenstraße 6

Röhnen ALLER ART

IN BEKANNTER QUALITAT

GERMAR WEISS

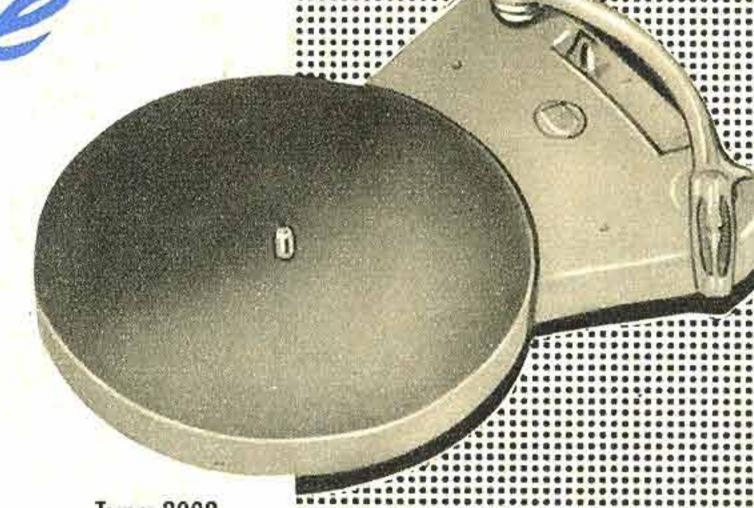
IMPORT-EXPORT

FRANKFURT AM MAIN TELEFON: 33844 TELEGR.: R'O'HRENWEISS

Palafon Pa-ppe-La-ck-Fo-lie

für Schallaufnahmen der Industrie, Tonstudios, Radiosendungen und Amateure

WILLY KUNZEL . Tonfolienfabrik Berlin-Steglitz, Heesestraße 12


Führender Importeur in Holland

auf dem Radio-Gebiet sucht Verbindung mit leistungsfähiger Fabrik für Radio- und Fernseh-Geräte zwecks Alleinverkauf

Angebote erbeten unter F. I. 7055

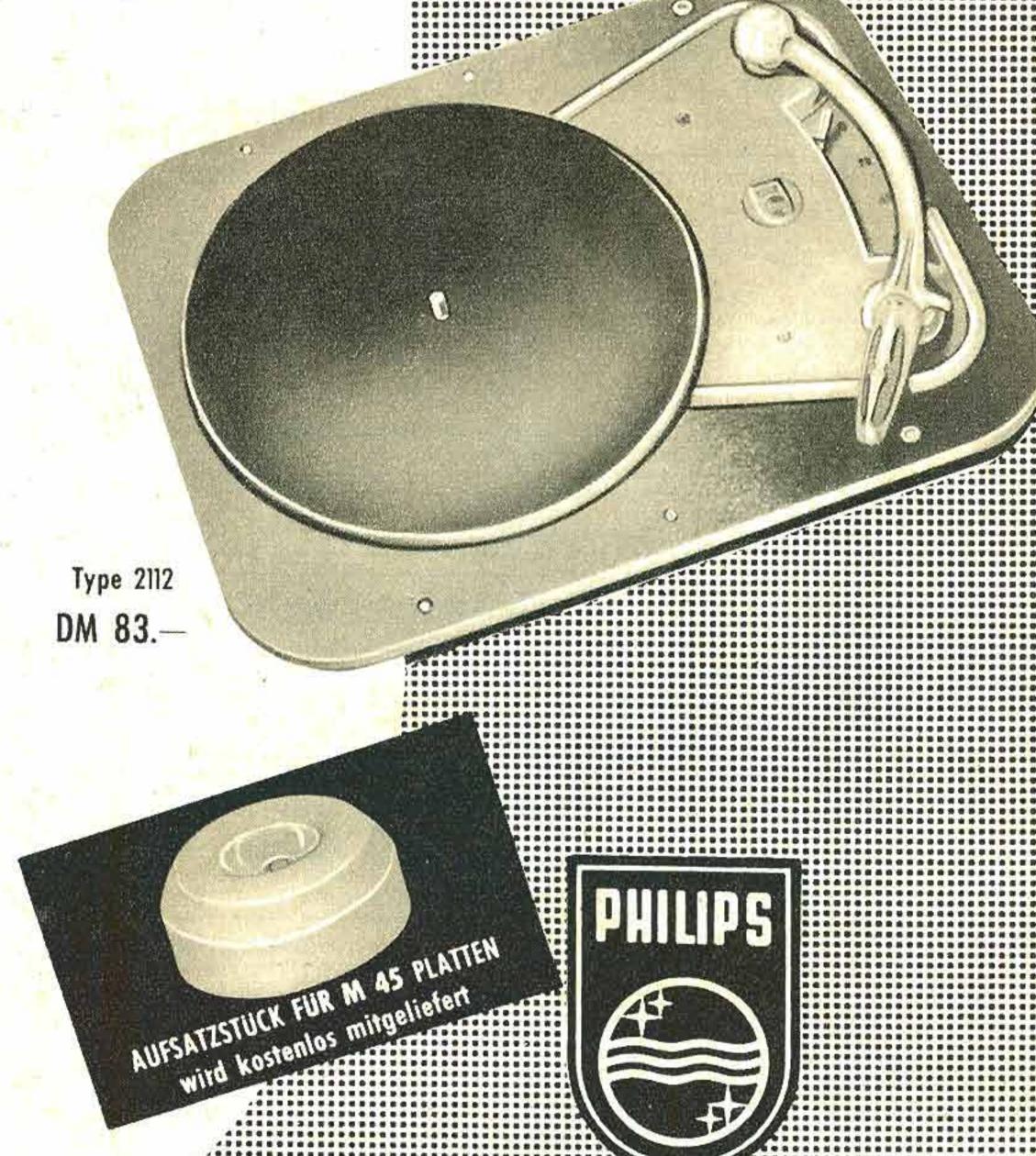
Meile PHILIPS LLL

Schallplatten
mit
45 Umdrehungen

Type 2002 DM 83.—

- Brillante, verzerrungsfreie Wiedergabe von Normal- und Langspielplatten im Hoch- und Tieftongebiet.
- Gleichmäßiger, rumpelfreier Lauf.
- Vollautomatischer Ausschalter mit kombinierter Tonabschaltung.
- Einfache, betriebssichere Konstruktion.
- Schneller, spielend leichter Einbau.
- Mikrofoniefreie, elastische Aufhängung.

Technische Daten:


Induktionsmotor, umschaltbar für 220, 127 und 110 Volt Wechselspannung.

Reibradantrieb für 78, 45 und 33 1/3 Umdrehungen.

Kristallsystem mit 2 Saphiren, Frequenz-Kurve nahezu linear, zwischen 30 und 12 000 Hz.

Tonarm: stabil, nevartig (ohne Entlastung), Auflagegewicht: 9 g.

Stromverbrauch: 7 Watt.

Der Fachhändler weiß es:

Wer Musik liebt, wählt PHILIPS Schallplatten "Klingende Kostbarkeiten"!